Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 740
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 613(7944): 565-574, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410718

RESUMEN

Programming T cells to distinguish self from non-self is a vital, multi-step process that occurs in the thymus1-4. Signalling through the pre-T cell receptor (preTCR), a CD3-associated heterodimer comprising an invariant pTα chain and a clone-specific ß chain, is a critical early checkpoint in thymocyte development within the αß T cell lineage5,6. PreTCRs arrayed on CD4-CD8- double-negative thymocytes ligate peptides bound to major histocompatibility complex molecules (pMHC) on thymic stroma, similar to αß T cell receptors that appear on CD4+CD8+ double-positive thymocytes, but via a different molecular docking strategy7-10. Here we show the consequences of these distinct interactions for thymocyte progression using synchronized fetal thymic progenitor cultures that differ in the presence or absence of pMHC on support stroma, and single-cell transcriptomes at key thymocyte developmental transitions. Although major histocompatibility complex (MHC)-negative stroma fosters αß T cell differentiation, the absence of preTCR-pMHC interactions leads to deviant thymocyte transcriptional programming associated with dedifferentiation. Highly proliferative double-negative and double-positive thymocyte subsets emerge, with antecedent characteristics of T cell lymphoblastic and myeloid malignancies. Compensatory upregulation of diverse MHC class Ib proteins in B2m/H2-Ab1 MHC-knockout mice partially safeguards in vivo thymocyte progression, although disseminated double-positive thymic tumours may develop with ageing. Thus, as well as promoting ß chain repertoire broadening for subsequent αß T cell receptor utilization, preTCR-pMHC interactions limit cellular plasticity to facilitate normal thymocyte differentiation and proliferation that, if absent, introduce developmental vulnerabilities.


Asunto(s)
Desdiferenciación Celular , Antígenos de Histocompatibilidad Clase I , Receptores de Antígenos de Linfocitos T , Timocitos , Animales , Ratones , Ratones Noqueados , Simulación del Acoplamiento Molecular , Péptidos/inmunología , Péptidos/metabolismo , Timocitos/citología , Timocitos/inmunología , Timo/citología , Timo/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo
2.
Immunity ; 49(5): 829-841.e6, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30389415

RESUMEN

Initial molecular details of cellular activation following αßT cell antigen receptor (TCR) ligation by peptide-major histocompatibility complexes (pMHC) remain unexplored. We determined the nuclear magnetic resonance (NMR) structure of the TCRα subunit transmembrane (TM) domain revealing a bipartite helix whose segmentation fosters dynamic movement. Positively charged TM residues Arg251 and Lys256 project from opposite faces of the helix, with Lys256 controlling immersion depth. Their modification caused stepwise reduction in TCR associations with CD3ζζ homodimers and CD3εγ plus CD3εδ heterodimers, respectively, leading to an activated transcriptome. Optical tweezers revealed that Arg251 and Lys256 mutations altered αßTCR-pMHC bond lifetimes, while mutations within interacting TCRα connecting peptide and CD3δ CxxC motif juxtamembrane elements selectively attenuated signal transduction. Our findings suggest that mechanical forces applied during pMHC ligation initiate T cell activation via a dissociative mechanism, shifting disposition of those basic sidechains to rearrange TCR complex membrane topology and weaken TCRαß and CD3 associations.


Asunto(s)
Complejo CD3/metabolismo , Membrana Celular/metabolismo , Dominios Proteicos , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Secuencia de Aminoácidos , Biomarcadores , Complejo CD3/química , Secuencia Conservada , Perfilación de la Expresión Génica , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Receptores de Antígenos de Linfocitos T alfa-beta/química , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Transducción de Señal , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 121(18): e2316302121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657048

RESUMEN

Bacteria are nonsexual organisms but are capable of exchanging DNA at diverse degrees through homologous recombination. Intriguingly, the rates of recombination vary immensely across lineages where some species have been described as purely clonal and others as "quasi-sexual." However, estimating recombination rates has proven a difficult endeavor and estimates often vary substantially across studies. It is unclear whether these variations reflect natural variations across populations or are due to differences in methodologies. Consequently, the impact of recombination on bacterial evolution has not been extensively evaluated and the evolution of recombination rate-as a trait-remains to be accurately described. Here, we developed an approach based on Approximate Bayesian Computation that integrates multiple signals of recombination to estimate recombination rates. We inferred the rate of recombination of 162 bacterial species and one archaeon and tested the robustness of our approach. Our results confirm that recombination rates vary drastically across bacteria; however, we found that recombination rate-as a trait-is conserved in several lineages but evolves rapidly in others. Although some traits are thought to be associated with recombination rate (e.g., GC-content), we found no clear association between genomic or phenotypic traits and recombination rate. Overall, our results provide an overview of recombination rate, its evolution, and its impact on bacterial evolution.


Asunto(s)
Bacterias , Teorema de Bayes , Evolución Molecular , Recombinación Homóloga , Bacterias/genética , Bacterias/clasificación , Modelos Genéticos , Filogenia , Genoma Bacteriano , Recombinación Genética
4.
Proc Natl Acad Sci U S A ; 120(27): e2215694120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37339184

RESUMEN

T cell receptors (TCR) on cytolytic T lymphocytes (CTLs) recognize "foreign" antigens bound in the groove of major histocompatibility complex (MHC) molecules (H-2 in mouse and HLA in human) displayed on altered cells. These antigens are peptide fragments of proteins derived either from infectious pathogens or cellular transformations during cancer evolution. The conjoint ligand formed by the foreign peptide and MHC, termed pMHC, marks an aberrant cell as a target for CTL-mediated destruction. Recent data have provided compelling evidence that adaptive protection is achieved in a facile manner during immune surveillance when mechanical load consequent to cellular motion is applied to the bond formed between an αß TCR and its pMHC ligand arrayed on a disease-altered cell. Mechanobiology maximizes both TCR specificity and sensitivity in comparison to receptor ligation in the absence of force. While the field of immunotherapy has made advances to impact the survival of cancer patients, the latest information relevant to T cell targeting and mechanotransduction has yet to be applied for T cell monitoring and treatment of patients in the clinic. Here we review these data, and challenge scientists and physicians to apply critical biophysical parameters of TCR mechanobiology to the medical oncology field, broadening treatment success within and among various cancer types. We assert that TCRs with digital ligand-sensing performance capability directed at sparsely as well as luminously displayed tumor-specific neoantigens and certain tumor-associated antigens can improve effective cancer vaccine development and immunotherapy paradigms.


Asunto(s)
Mecanotransducción Celular , Neoplasias , Humanos , Ratones , Animales , Ligandos , Receptores de Antígenos de Linfocitos T , Antígenos de Histocompatibilidad , Neoplasias/terapia , Antígenos de Neoplasias , Oncología Médica , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(15): e2123406119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35394875

RESUMEN

HIV-1 infection is incurable due to the persistence of the virus in a latent reservoir of resting memory CD4+ T cells. "Shock-and-kill" approaches that seek to induce HIV-1 gene expression, protein production, and subsequent targeting by the host immune system have been unsuccessful due to a lack of effective latency-reversing agents (LRAs) and kill strategies. In an effort to develop reagents that could be used to promote killing of infected cells, we constructed T cell receptor (TCR)-mimic antibodies to HIV-1 peptide-major histocompatibility complexes (pMHC). Using phage display, we panned for phages expressing antibody-like variable sequences that bound HIV-1 pMHC generated using the common HLA-A*02:01 allele. We targeted three epitopes in Gag and reverse transcriptase identified and quantified via Poisson detection mass spectrometry from cells infected in vitro with a pseudotyped HIV-1 reporter virus (NL4.3 dEnv). Sequences isolated from phages that bound these pMHC were cloned into a single-chain diabody backbone (scDb) sequence, such that one fragment is specific for an HIV-1 pMHC and the other fragment binds to CD3ε, an essential signal transduction subunit of the TCR. Thus, these antibodies utilize the sensitivity of T cell signaling as readouts for antigen processing and as agents to promote killing of infected cells. Notably, these scDbs are exquisitely sensitive and specific for the peptide portion of the pMHC. Most importantly, one scDb caused killing of infected cells presenting a naturally processed target pMHC. This work lays the foundation for a novel therapeutic killing strategy toward elimination of the HIV-1 reservoir.


Asunto(s)
Anticuerpos Biespecíficos , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Linfocitos T CD4-Positivos , Humanos , Imitación Molecular , Receptores de Antígenos de Linfocitos T , Latencia del Virus
6.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34172580

RESUMEN

High-acuity αßT cell receptor (TCR) recognition of peptides bound to major histocompatibility complex molecules (pMHCs) requires mechanosensing, a process whereby piconewton (pN) bioforces exert physical load on αßTCR-pMHC bonds to dynamically alter their lifetimes and foster digital sensitivity cellular signaling. While mechanotransduction is operative for both αßTCRs and pre-TCRs within the αßT lineage, its role in γδT cells is unknown. Here, we show that the human DP10.7 γδTCR specific for the sulfoglycolipid sulfatide bound to CD1d only sustains a significant load and undergoes force-induced structural transitions when the binding interface-distal γδ constant domain (C) module is replaced with that of αß. The chimeric γδ-αßTCR also signals more robustly than does the wild-type (WT) γδTCR, as revealed by RNA-sequencing (RNA-seq) analysis of TCR-transduced Rag2-/- thymocytes, consistent with structural, single-molecule, and molecular dynamics studies reflective of γδTCRs as mediating recognition via a more canonical immunoglobulin-like receptor interaction. Absence of robust, force-related catch bonds, as well as γδTCR structural transitions, implies that γδT cells do not use mechanosensing for ligand recognition. This distinction is consonant with the fact that their innate-type ligands, including markers of cellular stress, are expressed at a high copy number relative to the sparse pMHC ligands of αßT cells arrayed on activating target cells. We posit that mechanosensing emerged over ∼200 million years of vertebrate evolution to fulfill indispensable adaptive immune recognition requirements for pMHC in the αßT cell lineage that are unnecessary for the γδT cell lineage mechanism of non-pMHC ligand detection.


Asunto(s)
Mecanotransducción Celular , Receptores de Antígenos de Linfocitos T gamma-delta/química , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Secuencia de Aminoácidos , Animales , Perfilación de la Expresión Génica , Humanos , Ligandos , Ratones , Dominios Proteicos , Estabilidad Proteica , Estructura Secundaria de Proteína , Receptores de Antígenos de Linfocitos T alfa-beta/química , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Transducción de Señal , Imagen Individual de Molécula , Linfocitos T/metabolismo , Timocitos/metabolismo , Timo/metabolismo , Transcriptoma/genética
7.
J Cell Sci ; 134(3)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33380489

RESUMEN

A multiprotein complex containing TACC3, clathrin and other proteins has been implicated in mitotic spindle stability. To disrupt this complex in an anti-cancer context, we need to understand its composition and how it interacts with microtubules. Induced relocalization of proteins in cells is a powerful way to analyze protein-protein interactions and, additionally, monitor where and when these interactions occur. We used CRISPR/Cas9 gene editing to add tandem FKBP-GFP tags to each complex member. The relocalization of endogenous tagged protein from the mitotic spindle to mitochondria and assessment of the effect on other proteins allowed us to establish that TACC3 and clathrin are core complex members and that chTOG (also known as CKAP5) and GTSE1 are ancillary to the complex, binding respectively to TACC3 and clathrin, but not each other. We also show that PIK3C2A, a clathrin-binding protein that was proposed to stabilize the TACC3-chTOG-clathrin-GTSE1 complex during mitosis, is not a member of the complex. This work establishes that targeting the TACC3-clathrin interface or their microtubule-binding sites are the two strategies most likely to disrupt spindle stability mediated by this multiprotein complex.


Asunto(s)
Clatrina , Proteínas Asociadas a Microtúbulos , Huso Acromático , Clatrina/genética , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos , Mitosis
8.
J Clin Microbiol ; 61(3): e0152522, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36852983

RESUMEN

The rapid administration of optimal antimicrobial treatment is paramount for the treatment of bloodstream infections (BSIs), and rapid antimicrobial susceptibility testing (AST) results are essential. Q-linea has developed the ASTar system, a rapid phenotypic AST device. Here, we report the performance of the ASTar BC G- (Gram-negative) kit when assessed according to the ISO 20776-2:2007 standard for performance evaluation of in vitro diagnostic AST devices. The evaluated ASTar BC G- kit uses a broad panel of 23 antimicrobials for the treatment of BSIs caused by Gram-negative fastidious and nonfastidious bacteria across a range of 6 to 14 2-fold dilutions, including cefoxitin as a screening agent for AmpC-producing Enterobacterales. The ASTar system processes blood culture samples to generate data on MICs and susceptible, intermediate, or resistant (SIR) category. The automated protocol includes concentration determination and concentration adjustment to enable a controlled inoculum, followed by broth microdilution (BMD) and microscopy performed continuously to generate MIC values within approximately 6 h once the test is run on the ASTar system. The performance of the ASTar system was assessed against the ISO 20776-2:2007 standard BMD reference method. Testing was performed across three sites, with results from 412 contrived blood cultures and 74 fresh clinical blood cultures. The ASTar system was also tested for reproducibility, with triplicate testing of 11 strains. The accuracy study comprised 8,650 data points of bacterium-antimicrobial tests. The ASTar system demonstrated an overall essential agreement (EA) of 95.8% (8,283/8,650) and a categorical agreement (CA) of 97.6% (8,433/8,639) compared to the reference BMD method. The overall rate of major discrepancies (MDs) was 0.9% (62/6,845), and that of very major discrepancies (VMDs) was 2.4% (30/1,239). This study shows that the ASTar system delivers reproducible results with overall EA and CA of >95%.


Asunto(s)
Infecciones por Bacterias Gramnegativas , Sepsis , Humanos , Cultivo de Sangre/métodos , Infecciones por Bacterias Gramnegativas/microbiología , Reproducibilidad de los Resultados , Antibacterianos/farmacología , Factores de Tiempo , Bacterias Gramnegativas , Bacterias , Pruebas de Sensibilidad Microbiana , Juego de Reactivos para Diagnóstico
9.
Mod Pathol ; 36(9): 100240, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37307877

RESUMEN

Diagnosis of Lynch syndrome (LS) caused by a pathogenic germline MSH6 variant may be complicated by discordant immunohistochemistry (IHC) and/or by a microsatellite stable (MSS) phenotype. This study aimed to identify the various causes of the discordant phenotypes of colorectal cancer (CRC) and endometrial cancer (EC) in MSH6-associated LS. Data were collected from Dutch family cancer clinics. Carriers of a (likely) pathogenic MSH6 variant diagnosed with CRC or EC were categorized based on an microsatellite instability (MSI)/IHC test outcome that might fail to result in a diagnosis of LS (eg, retained staining of all 4 mismatch repair proteins, with or without an MSS phenotype, and other staining patterns). When tumor tissue was available, MSI and/or IHC were repeated. Next-generation sequencing (NGS) was performed in cases with discordant staining patterns. Data were obtained from 360 families with 1763 (obligate) carriers. MSH6 variant carriers with CRC or EC (n = 590) were included, consisting of 418 CRCs and 232 ECs. Discordant staining was reported in 77 cases (36% of MSI/IHC results). Twelve patients gave informed consent for further analysis of tumor material. Upon revision, 2 out of 3 MSI/IHC cases were found to be concordant with the MSH6 variant, and NGS showed that 4 discordant IHC results were sporadic rather than LS-associated tumors. In 1 case, somatic events explained the discordant phenotype. The use of reflex IHC mismatch repair testing, the current standard in most Western countries, may lead to the misdiagnosis of germline MSH6 variant carriers. The pathologist should point out that further diagnostics for inheritable colon cancer, including LS, should be considered in case of a strong positive family history. Germline DNA analysis of the mismatch repair genes, preferably as part of a larger gene panel, should therefore be considered in potential LS patients.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales Hereditarias sin Poliposis , Neoplasias Colorrectales , Neoplasias Endometriales , Femenino , Humanos , Repeticiones de Microsatélite , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Inestabilidad de Microsatélites , Neoplasias del Colon/genética , Reparación de la Incompatibilidad de ADN/genética , Neoplasias Endometriales/genética , Proteínas de Unión al ADN/genética , Neoplasias Colorrectales/patología
10.
Mol Cell ; 59(3): 462-77, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26166705

RESUMEN

Recognition and repair of damaged replication forks are essential to maintain genome stability and are coordinated by the combined action of the Fanconi anemia and homologous recombination pathways. These pathways are vital to protect stalled replication forks from uncontrolled nucleolytic activity, which otherwise causes irreparable genomic damage. Here, we identify BOD1L as a component of this fork protection pathway, which safeguards genome stability after replication stress. Loss of BOD1L confers exquisite cellular sensitivity to replication stress and uncontrolled resection of damaged replication forks, due to a failure to stabilize RAD51 at these forks. Blocking DNA2-dependent resection, or downregulation of the helicases BLM and FBH1, suppresses both catastrophic fork processing and the accumulation of chromosomal damage in BOD1L-deficient cells. Thus, our work implicates BOD1L as a critical regulator of genome integrity that restrains nucleolytic degradation of damaged replication forks.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Línea Celular , Supervivencia Celular , Daño del ADN , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Genoma Humano , Inestabilidad Genómica , Células HeLa , Humanos , RecQ Helicasas/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(35): 21336-21345, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32796106

RESUMEN

Each [Formula: see text]T cell receptor (TCR) functions as a mechanosensor. The TCR is comprised of a clonotypic TCR[Formula: see text] ligand-binding heterodimer and the noncovalently associated CD3 signaling subunits. When bound by ligand, an antigenic peptide arrayed by a major histocompatibility complex molecule (pMHC), the TCR[Formula: see text] has a longer bond lifetime under piconewton-level loads. The atomistic mechanism of this "catch bond" behavior is unknown. Here, we perform molecular dynamics simulation of a TCR[Formula: see text]-pMHC complex and its variants under physiologic loads to identify this mechanism and any attendant TCR[Formula: see text] domain allostery. The TCR[Formula: see text]-pMHC interface is dynamically maintained by contacts with a spectrum of occupancies, introducing a level of control via relative motion between Vα and Vß variable domains containing the pMHC-binding complementarity-determining region (CDR) loops. Without adequate load, the interfacial contacts are unstable, whereas applying sufficient load suppresses Vα-Vß motion, stabilizing the interface. A second level of control is exerted by Cα and Cß constant domains, especially Cß and its protruding FG-loop, that create mismatching interfaces among the four TCR[Formula: see text] domains and with a pMHC ligand. Applied load enhances fit through deformation of the TCR[Formula: see text] molecule. Thus, the catch bond involves the entire TCR[Formula: see text] conformation, interdomain motion, and interfacial contact dynamics, collectively. This multilayered architecture of the machinery fosters fine-tuning of cellular response to load and pMHC recognition. Since the germline-derived TCR[Formula: see text] ectodomain is structurally conserved, the proposed mechanism can be universally adopted to operate under load during immune surveillance by diverse [Formula: see text]TCRs constituting the T cell repertoire.


Asunto(s)
Complejo Mayor de Histocompatibilidad , Simulación de Dinámica Molecular , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Humanos , Ligandos , Mecanotransducción Celular , Linfocitos T/metabolismo
12.
J Biol Chem ; 296: 100255, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33837736

RESUMEN

T lymphocytes discriminate between healthy and infected or cancerous cells via T-cell receptor-mediated recognition of peptides bound and presented by cell-surface-expressed major histocompatibility complex molecules (MHCs). Pre-T-cell receptors (preTCRs) on thymocytes foster development of αßT lymphocytes through their ß chain interaction with MHC displaying self-peptides on thymic epithelia. The specific binding of a preTCR with a peptide-MHC complex (pMHC) has been identified previously as forming a weak affinity complex with a distinct interface from that of mature αßTCR. However, a lack of appropriate tools has limited prior efforts to investigate this unique interface. Here we designed a small-scale linkage screening protocol using bismaleimide linkers for determining residue-specific distance constraints between transiently interacting protein pairs in solution. Employing linkage distance restraint-guided molecular modeling, we report the oriented solution docking geometry of a preTCRß-pMHC interaction. The linkage model of preTCRß-pMHC complex was independently verified with paramagnetic pseudocontact chemical shift (PCS) NMR of the unlinked protein mixtures. Using linkage screens, we show that the preTCR binds with differing affinities to peptides presented by MHC in solution. Moreover, the C-terminal peptide segment is a key determinant in preTCR-pMHC recognition. We also describe the process for future large-scale production and purification of the linked constructs for NMR, X-ray crystallography, and single-molecule electron microscopy studies.


Asunto(s)
Antígenos de Superficie/ultraestructura , Unión Proteica/genética , Receptores de Antígenos de Linfocitos T/ultraestructura , Linfocitos T/ultraestructura , Antígenos de Superficie/química , Antígenos de Superficie/genética , Humanos , Complejo Mayor de Histocompatibilidad/genética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/ultraestructura , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Péptidos/genética , Dominios y Motivos de Interacción de Proteínas/genética , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T alfa-beta/química , Receptores de Antígenos de Linfocitos T alfa-beta/ultraestructura , Linfocitos T/química , Linfocitos T/inmunología , Timocitos/química , Timocitos/ultraestructura
13.
Mol Biol Evol ; 38(2): 727-734, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-32886787

RESUMEN

The core genome represents the set of genes shared by all, or nearly all, strains of a given population or species of prokaryotes. Inferring the core genome is integral to many genomic analyses, however, most methods rely on the comparison of all the pairs of genomes; a step that is becoming increasingly difficult given the massive accumulation of genomic data. Here, we present CoreCruncher; a program that robustly and rapidly constructs core genomes across hundreds or thousands of genomes. CoreCruncher does not compute all pairwise genome comparisons and uses a heuristic based on the distributions of identity scores to classify sequences as orthologs or paralogs/xenologs. Although it is much faster than current methods, our results indicate that our approach is more conservative than other tools and less sensitive to the presence of paralogs and xenologs. CoreCruncher is freely available from: https://github.com/lbobay/CoreCruncher. CoreCruncher is written in Python 3.7 and can also run on Python 2.7 without modification. It requires the python library Numpy and either Usearch or Blast. Certain options require the programs muscle or mafft.


Asunto(s)
Genoma Arqueal , Genoma Bacteriano , Genómica/métodos , Serratia marcescens/genética
14.
Clin Gastroenterol Hepatol ; 20(3): e496-e507, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33887476

RESUMEN

BACKGROUND & AIMS: Lynch syndrome is a form of hereditary colorectal cancer (CRC) caused by pathogenic germline variants (PV) in DNA mismatch repair (MMR) genes. Currently, many Western countries perform universal immunohistochemistry testing on CRC to increase the identification of Lynch syndrome patients and their relatives. For a clear understanding of health benefits and costs, data on its outcomes are required: proportions of Lynch syndrome, sporadic MMR-deficient (MMRd) cases, and unexplained MMRd cases. METHODS: Ovid Medline, Embase, and Cochrane CENTRAL were searched for studies reporting on universal MMR immunohistochemistry, followed by MMR germline analysis, until March 20, 2020. Proportions were calculated, subgroup analyses were performed based on age and diagnostics used, and random effects meta-analyses were conducted. Quality was assessed using the Joanna Briggs Critical Appraisal Tool for Prevalence Studies. RESULTS: Of 2723 identified articles, 56 studies covering 58,580 CRCs were included. In 6.22% (95% CI, 5.08%-7.61%; I2 = 96%) MMRd was identified. MMR germline PV was present in 2.00% (95% CI, 1.59%-2.50%; I2 = 92%), ranging from 1.80% to 7.27% based on completeness of diagnostics and age restriction. Immunohistochemistry outcomes were missing in 11.81%, and germline testing was performed in 76.30% of eligible patients. In 7 studies, including 6848 CRCs completing all diagnostic stages, germline PV and biallelic somatic MMR inactivation were found in 3.01% and 1.75%, respectively; 0.61% remained unexplained MMRd. CONCLUSIONS: Age, completeness, and type of diagnostics affect the percentage of MMR PV and unexplained MMRd percentages. Complete diagnostics explain almost all MMRd CRCs, reducing the amount of subsequent multigene panel testing. This contributes to optimizing testing and surveillance in MMRd CRC patients and relatives.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Neoplasias Colorrectales , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Reparación de la Incompatibilidad de ADN , Humanos , Inmunohistoquímica
15.
Proc Natl Acad Sci U S A ; 116(45): 22556-22566, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31624123

RESUMEN

The membrane proximal external region (MPER) of HIV-1 envelope glycoprotein (gp) 41 is an attractive vaccine target for elicitation of broadly neutralizing antibodies (bNAbs) by vaccination. However, current details regarding the quaternary structural organization of the MPER within the native prefusion trimer [(gp120/41)3] are elusive and even contradictory, hindering rational MPER immunogen design. To better understand the structural topology of the MPER on the lipid bilayer, the adjacent transmembrane domain (TMD) was appended (MPER-TMD) and studied. Membrane insertion of the MPER-TMD was sensitive both to the TMD sequence and cytoplasmic residues. Antigen binding of MPER-specific bNAbs, in particular 10E8 and DH511.2_K3, was significantly impacted by the presence of the TMD. Furthermore, MPER-TMD assembly into 10-nm diameter nanodiscs revealed a heterogeneous membrane array comprised largely of monomers and dimers, as enumerated by bNAb Fab binding using single-particle electron microscopy analysis, arguing against preferential trimeric association of native MPER and TMD protein segments. Moreover, introduction of isoleucine mutations in the C-terminal heptad repeat to induce an extended MPER α-helical bundle structure yielded an antigenicity profile of cell surface-arrayed Env variants inconsistent with that found in the native prefusion state. In line with these observations, electron paramagnetic resonance analysis suggested that 10E8 inhibits viral membrane fusion by lifting the MPER N-terminal region out of the viral membrane, mandating the exposure of residues that would be occluded by MPER trimerization. Collectively, our data suggest that the MPER is not a stable trimer, but rather a dynamic segment adapted for structural changes accompanying fusion.


Asunto(s)
Membrana Celular/virología , Proteína gp41 de Envoltorio del VIH/química , VIH-1/inmunología , Anticuerpos Neutralizantes/inmunología , Membrana Celular/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp41 de Envoltorio del VIH/genética , Proteína gp41 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/química , VIH-1/genética , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/inmunología , Dominios Proteicos
16.
Trends Immunol ; 39(8): 596-609, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30060805

RESUMEN

T lymphocytes use αß T cell receptors (TCRs) to recognize sparse antigenic peptides bound to MHC molecules (pMHCs) arrayed on antigen-presenting cells (APCs). Contrary to conventional receptor-ligand associations exemplified by antigen-antibody interactions, forces play a crucial role in nonequilibrium mechanosensor-based T cell activation. Both T cell motility and local cytoskeleton machinery exert forces (i.e., generate loads) on TCR-pMHC bonds. We review biological features of the load-dependent activation process as revealed by optical tweezers single molecule/single cell and other biophysical measurements. The findings link pMHC-triggered TCRs to single cytoskeletal motors; define the importance of energized anisotropic (i.e., force direction dependent) activation; and characterize immunological synapse formation as digital, revealing no serial requirement. The emerging picture suggests new approaches for the monitoring and design of cytotoxic T lymphocyte (CTL)-based immunotherapy.


Asunto(s)
Citoesqueleto/metabolismo , Inmunoterapia Adoptiva/métodos , Mecanotransducción Celular , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Linfocitos T Citotóxicos/inmunología , Linfocitos T/fisiología , Animales , Anisotropía , Presentación de Antígeno , Antígenos/metabolismo , Antígenos de Histocompatibilidad/metabolismo , Humanos , Péptidos/metabolismo , Análisis de la Célula Individual
17.
Int Bus Rev ; 30(3): 101802, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36568574

RESUMEN

The emergence of the COVID-19 pandemic has adversely affected the fortunes of multiple companies around the globe. Accordingly, questions are increasingly being asked about how organizations can revitalize during and after a crisis. Yet, we have limited understanding of how organizations renew themselves during crises over time. We explore this question through the lens and examination of two South-Asian airlines: Pakistan International Airlines and Sri Lankan Airlines. The cases offer important insights into the reasons behind underperformance of state-controlled enterprises and renewal activities. We shed light on strategic renewal (SR) in the wake of increasing liberalization and deregulations in the global airline industry. To this end, we propose a four-stage approach towards renewing such underperforming organizations to respond effectively to black swan events and external shocks.

18.
Clin Gastroenterol Hepatol ; 18(5): 1112-1120.e1, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31470178

RESUMEN

BACKGROUND & AIMS: Patients with Lynch syndrome are offered the same colorectal cancer (CRC) surveillance programs (colonoscopy every 2 years), regardless of the pathogenic DNA mismatch repair gene variant the patient carries. We aimed to assess the yield of surveillance for patients with these variants in MLH1, MSH2, MSH6, and PMS2. METHODS: We analyzed data on colonoscopy surveillance, including histopathology analysis, from all patients diagnosed with Lynch syndrome (n = 264) at a single center. We compared the development of (advanced) adenomas and CRC among patients with pathogenic variants in the DNA mismatch repair genes MLH1 (n = 55), MSH2 (n = 44), MSH6 (n = 143), or PMS2 (n = 22) over 1836 years of follow-up (median follow-up of 6 years per patient). RESULTS: At first colonoscopy, CRC was found in 8 patients. During 916 follow-up colonoscopies, CRC was found in 9 patients. No CRC was found in patients with variants in MSH6 or PMS2 over the entire follow-up period. There were no significant differences in the number of colonoscopies with adenomas or advanced adenomas among the groups. The median time of adenoma development was 3 years (IQR, 2-6 years). There were no significant differences in time to development of adenoma. However, patients with variants in MSH6 had a significant longer time to development of advanced neoplasia (advanced adenoma or CRC) than patients in the other groups. Six carriers died during follow up (5 from cancer, of which 3 from pancreatic cancer). CONCLUSIONS: No CRC was found during follow-up of patients with Lynch syndrome carrying pathogenic variants in MSH6; advanced neoplasia developed over shorter follow-up time periods in patients with pathogenic variants in MLH1 or MSH2. The colonoscopy interval for patients with pathogenic variants in MSH6 might be increased to 3 years from the regular 2-year interval.


Asunto(s)
Adenoma , Neoplasias Colorrectales Hereditarias sin Poliposis , Adenoma/epidemiología , Adenoma/genética , Colonoscopía , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/epidemiología , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación de la Incompatibilidad de ADN/genética , Proteínas de Unión al ADN/genética , Humanos , Homólogo 1 de la Proteína MutL/genética
19.
Immunity ; 35(5): 658-60, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22118519

RESUMEN

Functional cognate T cell recognition is mediated via the interaction of a T cell receptor complex with its pMHC ligand. Adams et al. (2011) in this issue of Immunity provide evidence that docking geometry may impact 2D binding and T cell activation.

20.
BMC Med Res Methodol ; 20(1): 144, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503435

RESUMEN

BACKGROUND: Person-environment fit, which examines the individual's perceptions of if, and in what way, he or she is compatible with aspects of the work context, offers a promising conceptual model for understanding employees and their interactions in health care environments. There are numerous potential ways an individual feels they "fit" with their environment. The construct was first noted almost thirty years ago, yet still remains elusive. Feelings of fit with one's environment are typically measured by surveys, but current surveys encompass only a subset of the different components of fit, which may limit the conclusions drawn. Further, these surveys have rarely been conducted in a focused way in health care settings. METHOD: This article describes the development of a multidimensional survey tool to measure fit in relation to the person's work group (termed person-group (P-G) fit) and their organisation (person-organisation (P-O) fit). The participants were mental health care employees, volunteers, and university interns (n = 213 for P-O fit; n = 194 for P-G fit). Confirmatory Factor Analyses (CFAs) were conducted using LISREL. RESULTS: Valid and reliable sub-scales were found. CONCLUSION: This advanced multidimensional survey tool can be used to measure P-O and P-G fit, and illuminates new information about the theoretical structure of the fit construct.


Asunto(s)
Personal de Salud , Lugar de Trabajo , Atención a la Salud , Análisis Factorial , Femenino , Humanos , Masculino , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA