Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JAMA ; 330(2): 161-169, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37432431

RESUMEN

Importance: Genomic testing in infancy guides medical decisions and can improve health outcomes. However, it is unclear whether genomic sequencing or a targeted neonatal gene-sequencing test provides comparable molecular diagnostic yields and times to return of results. Objective: To compare outcomes of genomic sequencing with those of a targeted neonatal gene-sequencing test. Design, Setting, and Participants: The Genomic Medicine for Ill Neonates and Infants (GEMINI) study was a prospective, comparative, multicenter study of 400 hospitalized infants younger than 1 year of age (proband) and their parents, when available, suspected of having a genetic disorder. The study was conducted at 6 US hospitals from June 2019 to November 2021. Exposure: Enrolled participants underwent simultaneous testing with genomic sequencing and a targeted neonatal gene-sequencing test. Each laboratory performed an independent interpretation of variants guided by knowledge of the patient's phenotype and returned results to the clinical care team. Change in clinical management, therapies offered, and redirection of care was provided to families based on genetic findings from either platform. Main Outcomes and Measures: Primary end points were molecular diagnostic yield (participants with ≥1 pathogenic variant or variant of unknown significance), time to return of results, and clinical utility (changes in patient care). Results: A molecular diagnostic variant was identified in 51% of participants (n = 204; 297 variants identified with 134 being novel). Molecular diagnostic yield of genomic sequencing was 49% (95% CI, 44%-54%) vs 27% (95% CI, 23%-32%) with the targeted gene-sequencing test. Genomic sequencing did not report 19 variants found by the targeted neonatal gene-sequencing test; the targeted gene-sequencing test did not report 164 variants identified by genomic sequencing as diagnostic. Variants unidentified by the targeted genomic-sequencing test included structural variants longer than 1 kilobase (25.1%) and genes excluded from the test (24.6%) (McNemar odds ratio, 8.6 [95% CI, 5.4-14.7]). Variant interpretation by laboratories differed by 43%. Median time to return of results was 6.1 days for genomic sequencing and 4.2 days for the targeted genomic-sequencing test; for urgent cases (n = 107) the time was 3.3 days for genomic sequencing and 4.0 days for the targeted gene-sequencing test. Changes in clinical care affected 19% of participants, and 76% of clinicians viewed genomic testing as useful or very useful in clinical decision-making, irrespective of a diagnosis. Conclusions and Relevance: The molecular diagnostic yield for genomic sequencing was higher than a targeted neonatal gene-sequencing test, but the time to return of routine results was slower. Interlaboratory variant interpretation contributes to differences in molecular diagnostic yield and may have important consequences for clinical management.


Asunto(s)
Enfermedades Genéticas Congénitas , Pruebas Genéticas , Tamizaje Neonatal , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma , Toma de Decisiones Clínicas/métodos , Perfil Genético , Genómica , Estudios Prospectivos , Pruebas Genéticas/métodos , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Humanos , Recién Nacido , Tamizaje Neonatal/métodos , Lactante , Análisis de Secuencia de ADN/métodos , Mutación
2.
Hum Mutat ; 43(3): 305-315, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35026043

RESUMEN

Iron-sulfur cluster proteins are involved in critical functions for gene expression regulation and mitochondrial bioenergetics including the oxidative phosphorylation system. The c.215G>A p.(Arg72Gln) variant in NFS1 has been previously reported to cause infantile mitochondrial complex II and III deficiency. We describe three additional unrelated patients with the same missense variant. Two infants with the same homozygous variant presented with hypotonia, weakness and lactic acidosis, and one patient with compound heterozygous p.(Arg72Gln) and p.(Arg412His) variants presented as a young adult with gastrointestinal symptoms and fatigue. Skeletal muscle biopsy from patients 1 and 3 showed abnormal mitochondrial morphology, and functional analyses demonstrated decreased activity in respiratory chain complex II and variably in complexes I and III. We found decreased mitochondrial and cytosolic aconitase activities but only mildly affected lipoylation of pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase enzymes. Our studies expand the phenotypic spectrum and provide further evidence for the pathogenicity and functional sequelae of NFS1-related disorders with disturbances in both mitochondrial and cytosolic iron-sulfur cluster containing enzymes.


Asunto(s)
Proteínas Hierro-Azufre , Hierro , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Humanos , Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Azufre/metabolismo , Adulto Joven
3.
Am J Med Genet A ; 185(7): 2126-2130, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33749980

RESUMEN

Hemimegalencephaly (HME) is a rare hamartomatous congenital malformation of the brain characterized by dysplastic overgrowth of either one of the cerebral hemispheres. HME is associated with early onset seizures, abnormal neurological findings, and with subsequent cognitive and behavioral disabilities. Seizures associated with HME are often refractory to antiepileptic medications. Hemispherectomy is usually necessary to provide effective seizure control. The exact etiology of HME is not fully understood, but involves a disturbance in early brain development and likely involves genes responsible for patterning and symmetry of the brain. We present a female newborn who had refractory seizures due to HME. Whole genome sequencing revealed a novel, likely pathogenic, maternally inherited, 3Kb deletion encompassing exon 5 of the NPRL3 gene (chr16:161898-164745x1). The NPRL3 gene encodes for a nitrogen permease regulator 3-like protein, a subunit of the GATOR complex, which regulates the mTOR signaling pathway. A trial of mTOR inhibitor drug, Sirolimus, did not improve her seizure control. Functional hemispherectomy at 3 months of age resulted in total abatement of clinical seizures.


Asunto(s)
Epilepsia/genética , Proteínas Activadoras de GTPasa/genética , Hemimegalencefalia/genética , Convulsiones/genética , Serina-Treonina Quinasas TOR/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Epilepsia/patología , Femenino , Predisposición Genética a la Enfermedad , Hemimegalencefalia/tratamiento farmacológico , Hemimegalencefalia/patología , Humanos , Recién Nacido , Convulsiones/patología , Sirolimus/administración & dosificación , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
4.
Am J Med Genet A ; 185(1): 157-167, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33112498

RESUMEN

Mutations in the short-chain enoyl-CoA hydratase (SCEH) gene, ECHS1, cause a rare autosomal recessive disorder of valine catabolism. Patients usually present with developmental delay, regression, dystonia, feeding difficulties, and abnormal MRI with bilateral basal ganglia involvement. We present clinical, biochemical, molecular, and functional data for four affected patients from two unrelated families of Samoan descent with identical novel compound heterozygous mutations. Family 1 has three affected boys while Family 2 has an affected daughter, all with clinical and MRI findings of Leigh syndrome and intermittent episodes of acidosis and ketosis. WES identified a single heterozygous variant in ECHS1 at position c.832G > A (p.Ala278Thr). However, western blot revealed significantly reduced ECHS1 protein for all affected family members. Decreased SCEH activity in fibroblasts and a mild increase in marker metabolites in urine further supported ECHS1 as the underlying gene defect. Additional investigations at the DNA (aCGH, WGS) and RNA (qPCR, RT-PCR, RNA-Seq, RNA-Array) level identified a silent, common variant at position c.489G > A (p.Pro163=) as the second mutation. This substitution, present at high frequency in the Samoan population, is associated with decreased levels of normally spliced mRNA. To our understanding, this is the first report of a novel, hypomorphic allele c.489G > A (p.Pro163=), associated with SCEH deficiency.


Asunto(s)
Enoil-CoA Hidratasa/genética , Predisposición Genética a la Enfermedad , Enfermedades Raras/genética , Adolescente , Niño , Preescolar , Femenino , Heterocigoto , Humanos , Lactante , Masculino , Mutación/genética , Enfermedades Raras/diagnóstico , Enfermedades Raras/epidemiología , Enfermedades Raras/patología , Samoa/epidemiología
5.
Am J Med Genet A ; 182(9): 2037-2048, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32710489

RESUMEN

The SET domain containing 2, histone lysine methyltransferase encoded by SETD2 is a dual-function methyltransferase for histones and microtubules and plays an important role for transcriptional regulation, genomic stability, and cytoskeletal functions. Specifically, SETD2 is associated with trimethylation of histone H3 at lysine 36 (H3K36me3) and methylation of α-tubulin at lysine 40. Heterozygous loss of function and missense variants have previously been described with Luscan-Lumish syndrome (LLS), which is characterized by overgrowth, neurodevelopmental features, and absence of overt congenital anomalies. We have identified 15 individuals with de novo variants in codon 1740 of SETD2 whose features differ from those with LLS. Group 1 consists of 12 individuals with heterozygous variant c.5218C>T p.(Arg1740Trp) and Group 2 consists of 3 individuals with heterozygous variant c.5219G>A p.(Arg1740Gln). The phenotype of Group 1 includes microcephaly, profound intellectual disability, congenital anomalies affecting several organ systems, and similar facial features. Individuals in Group 2 had moderate to severe intellectual disability, low normal head circumference, and absence of additional major congenital anomalies. While LLS is likely due to loss of function of SETD2, the clinical features seen in individuals with variants affecting codon 1740 are more severe suggesting an alternative mechanism, such as gain of function, effects on epigenetic regulation, or posttranslational modification of the cytoskeleton. Our report is a prime example of different mutations in the same gene causing diverging phenotypes and the features observed in Group 1 suggest a new clinically recognizable syndrome uniquely associated with the heterozygous variant c.5218C>T p.(Arg1740Trp) in SETD2.


Asunto(s)
Predisposición Genética a la Enfermedad , N-Metiltransferasa de Histona-Lisina/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Tubulina (Proteína)/genética , Niño , Preescolar , Codón/genética , Epigénesis Genética/genética , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Discapacidad Intelectual/patología , Mutación con Pérdida de Función/genética , Masculino , Mutación Missense , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/patología , Trastornos del Neurodesarrollo/fisiopatología
6.
Pharmacogenet Genomics ; 23(3): 156-66, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23324805

RESUMEN

OBJECTIVES: FKBP51 (51 kDa immunophilin) acts as a modulator of the glucocorticoid receptor and a negative regulator of the Akt pathway. Genetic variation in FKBP5 plays a role in antidepressant response. The aim of this study was to comprehensively assess the role of genetic variation in FKBP5, identified by both Sanger and Next Generation DNA resequencing, as well as genome-wide single nucleotide polymorphisms (SNPs) associated with FKBP5 expression in the response to the selective serotonin reuptake inhibitor (SSRI) treatment of major depressive disorder. METHODS: We identified 657 SNPs in FKBP5 by Next Generation sequencing of 96 DNA samples from white patients, and 149 SNPs were selected for the genotyping together with 235 SNPs that were trans-associated with variation in FKBP5 expression in lymphoblastoid cells. A total of 529 DNA samples from the Mayo Clinic PGRN-SSRI Pharmacogenomic trial for which genome-wide SNPs had already been obtained were genotyped for these 384 SNPs, and associations with treatment outcomes were determined. The most significant SNPs were genotyped using 96 DNA samples from white non-Hispanic patients of the NIMH-supported Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study to attempt replication, followed by functional genomic studies. RESULTS: Genotype-phenotype association analysis indicated that rs352428 was associated with both 8-week treatment response in the Mayo study (odds ratio=0.49; P=0.003) and 6-week response in the STAR*D replication study (odds ratio=0.74; P=0.05). The electrophoresis mobility shift assay and the reporter gene assay confirmed the possible role of this SNP in transcription regulation. CONCLUSION: This comprehensive FKBP5 sequence study provides insight into the role of common genetic polymorphisms that might influence SSRI treatment outcomes in major depressive disorder patients.


Asunto(s)
Trastorno Depresivo Mayor/tratamiento farmacológico , Variación Genética , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Proteínas de Unión a Tacrolimus/genética , Células Cultivadas , Ensayo de Cambio de Movilidad Electroforética , Humanos , Mutagénesis Sitio-Dirigida , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Resultado del Tratamiento
7.
Methods Mol Biol ; 2621: 217-239, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37041447

RESUMEN

Upon admission to intensive care units (ICU), the differential diagnosis of almost all infants with diseases of unclear etiology includes single locus genetic diseases. Rapid whole genome sequencing (rWGS), including sample preparation, short-read sequencing-by-synthesis, informatics pipelining, and semiautomated interpretation, can now identify nucleotide and structural variants associated with most genetic diseases with robust analytic and diagnostic performance in as little as 13.5 h. Early diagnosis of genetic diseases transforms medical and surgical management of infants in ICUs, minimizing both the duration of empiric treatment and the delay to start of specific treatment. Both positive and negative rWGS tests have clinical utility and can improve outcomes. Since first described 10 years ago, rWGS has evolved considerably. Here we describe our current methods for routine diagnostic testing for genetic diseases by rWGS in as little as 18 h.


Asunto(s)
Enfermedad Crítica , Pruebas Genéticas , Lactante , Humanos , Niño , Secuenciación Completa del Genoma/métodos , Pruebas Genéticas/métodos , Unidades de Cuidados Intensivos , Diagnóstico Precoz
8.
NPJ Genom Med ; 7(1): 27, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35395838

RESUMEN

Whole genome sequencing (WGS) shows promise as a first-tier diagnostic test for patients with rare genetic disorders. However, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading health care and research organizations in the US and Canada, was formed to expand access to high quality clinical WGS by convening experts and publishing best practices. Here, we present best practice recommendations for the interpretation and reporting of clinical diagnostic WGS, including discussion of challenges and emerging approaches that will be critical to harness the full potential of this comprehensive test.

9.
Pediatrics ; 148(1)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34193621

RESUMEN

Congenital anomalies affect 3% to 5% of births and remain the leading cause of infant death in the United States. As whole exome and genome sequencing are increasingly used to diagnose underlying genetic disease, the patient's clinical presentation remains the most important context for interpreting sequencing results, including frequently reported variants of uncertain significance (VUS). Classification of a variant as VUS acknowledges limits on evidence to establish whether a variant can be classified as pathogenic or benign according to the American College of Medical Genetics guidelines. Importantly, the VUS designation reflects limits on the breadth of evidence linking the genetic variant to a disease. However, available evidence, although limited, may be surprisingly relevant in an individual patient's case. Accordingly, a VUS result should be approached neither as nondiagnostic genetic result nor as automatically "uncertain" in its potential to guide clinical decision-making. In this article, we discuss a case of an infant born at 29 weeks 4 days without a corpus callosum, whose whole genome sequencing yielded compound heterozygous variants both classified as VUS in ROBO1, a gene encoding for a receptor involved in a canonical signaling mechanism that guides axons across midline. Approaching the VUS result as potentially pathogenic, we found the infant ultimately had pituitary dysfunction and renal anomalies consistent with other reported ROBO1 variants and basic science literature. Accordingly, we highlight resources for variant interpretation available to clinicians to evaluate VUS results, particularly as they inform the diagnosis of individually rare but collectively common rare diseases.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Variación Genética , Proteínas del Tejido Nervioso/genética , Receptores Inmunológicos/genética , Insuficiencia Suprarrenal/genética , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Toma de Decisiones Clínicas , Heterocigoto , Humanos , Hipopituitarismo/genética , Recién Nacido , Recien Nacido Prematuro , Enfermedades Renales Quísticas/genética , Imagen por Resonancia Magnética , Masculino , Ultrasonografía , Incertidumbre , Secuenciación Completa del Genoma , Proteínas Roundabout
10.
Artículo en Inglés | MEDLINE | ID: mdl-33883208

RESUMEN

Visceral myopathies (VMs) encompass a spectrum of disorders characterized by chronic disruption of gastrointestinal function, with or without urinary system involvement. Pathogenic missense variation in smooth muscle γ-actin gene (ACTG2) is associated with autosomal dominant VM. Whole-genome sequencing of an infant presenting with chronic intestinal pseudo-obstruction revealed a homozygous 187 bp (c.589_613 + 163del188) deletion spanning the exon 6-intron 6 boundary within ACTG2 The patient's clinical course was marked by prolonged hospitalizations, multiple surgeries, and intermittent total parenteral nutrition dependence. This case supports the emerging understanding of allelic heterogeneity in ACTG2-related VM, in which both biallelic and monoallelic variants in ACTG2 are associated with gastrointestinal dysfunction of similar severity and overlapped clinical presentation. Moreover, it illustrates the clinical utility of rapid whole-genome sequencing, which can comprehensively and precisely detect different types of genomic variants including small deletions, leading to guidance of clinical care decisions.


Asunto(s)
Actinas/genética , Genotipo , Seudoobstrucción Intestinal/diagnóstico , Seudoobstrucción Intestinal/genética , Humanos , Ileus , Lactante , Seudoobstrucción Intestinal/patología , Masculino , Linaje , Resultado del Tratamiento , Secuenciación Completa del Genoma
11.
Artículo en Inglés | MEDLINE | ID: mdl-32843431

RESUMEN

Relatively little is known about phenotypic variability in nonsyndromic nephropathy associated with the gene encoding the WT1 transcription factor. We report a 12-mo-old female who presented with vomiting, diarrhea, and fatigue in the setting of renal failure and malignant hypertension. Trio ultra-rapid whole-genome sequencing identified a novel, likely pathogenic, de novo missense variant (c.485T > A, p.Val162Asp) in WT1 in 46 h, consistent with a diagnosis of nephrotic syndrome type 4 (NPHS4; OMIM 256370). This disorder typically presents with nephrotic syndrome (gross proteinuria, hypoalbuminemia, and edema). Rapid diagnosis had an immediate impact on her clinical management in the pediatric intensive care unit. Diagnostic renal biopsy was avoided, and placement of permanent dialysis access, a gastrostomy tube, and bilateral nephrectomy were accelerated. This report expands the presenting phenotype of nonsyndromic nephrotic syndrome and/or renal failure due to heterozygous variants in WT1 (NPHS4). It also highlights the relationship between time to genomic diagnosis and clinical utility in critically ill infants.


Asunto(s)
Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/genética , Proteínas WT1/genética , Exones , Femenino , Genómica , Heterocigoto , Humanos , Lactante , Mutación Missense/genética , Fenotipo , Proteínas WT1/metabolismo , Secuenciación Completa del Genoma
12.
JIMD Rep ; 34: 11-18, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27469132

RESUMEN

Keratan sulfate (KS) is commonly elevated in urine samples from patients with mucopolysaccharidosis type IVA (MPS IVA) and is considered pathognomonic for the condition. Recently, a new method has been described by Martell et al. to detect and measure urinary KS utilizing LC-MS/MS. As a part of the validation of this method in our laboratory, we studied the sensitivity and specificity of elevated urine KS levels using 25 samples from 15 MPS IVA patients, and 138 samples from 102 patients with other lysosomal storage disorders, including MPS I (n = 9), MPS II (n = 13), MPS III (n = 23), MPS VI (n = 7), beta-galactosidase deficiency (n = 7), mucolipidosis (ML) type II, II/III and III (n = 51), alpha-mannosidosis (n = 11), fucosidosis (n = 4), sialidosis (n = 5), Pompe disease (n = 3), aspartylglucosaminuria (n = 4), and galactosialidosis (n = 1). As expected, urine KS values were significantly higher (fivefold average increase) than age-matched controls in all MPS IVA patients. Urine KS levels were also significantly elevated (threefold to fourfold increase) in patients with GM-1 gangliosidosis, MPS IVB, ML II and ML II/III, and fucosidosis. Urine KS was also elevated to a smaller degree (1.1-fold to 1.7-fold average increase) in patients with MPS I, MPS II, and ML III. These findings suggest that while the UPLC-MS/MS urine KS method is 100% sensitive for the detection of patients with MPS IVA, elevated urine KS is not specific for this condition. Therefore, caution is advised when interpreting urinary keratan sulfate results.

13.
PLoS One ; 8(8): e70216, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23936393

RESUMEN

PURPOSE: FKBP51, (FKBP5), is a negative regulator of Akt. Variability in FKBP5 expression level is a major factor contributing to variation in response to chemotherapeutic agents including gemcitabine, a first line treatment for pancreatic cancer. Genetic variation in FKBP5 could influence its function and, ultimately, treatment response of pancreatic cancer. EXPERIMENTAL DESIGN: We set out to comprehensively study the role of genetic variation in FKBP5 identified by Next Generation DNA resequencing on response to gemcitabine treatment of pancreatic cancer by utilizing both tumor and germline DNA samples from 43 pancreatic cancer patients, including 19 paired normal-tumor samples. Next, genotype-phenotype association studies were performed with overall survival as well as with FKBP5 gene expression in tumor using the same samples in which resequencing had been performed, followed by functional genomics studies. RESULTS: In-depth resequencing identified 404 FKBP5 single nucleotide polymorphisms (SNPs) in normal and tumor DNA. SNPs with the strongest associations with survival or FKBP5 expression were subjected to functional genomic study. Electromobility shift assay showed that the rs73748206 "A(T)" SNP altered DNA-protein binding patterns, consistent with significantly increased reporter gene activity, possibly through its increased binding to Glucocorticoid Receptor (GR). The effect of rs73748206 was confirmed on the basis of its association with FKBP5 expression by affecting the binding to GR in lymphoblastoid cell lines derived from the same patients for whom DNA was used for resequencing. CONCLUSION: This comprehensive FKBP5 resequencing study provides insights into the role of genetic variation in variation of gemcitabine response.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Polimorfismo de Nucleótido Simple , Proteínas de Unión a Tacrolimus/genética , Desoxicitidina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genotipo , Células HEK293 , Humanos , Farmacogenética , Fenotipo , Receptores de Glucocorticoides/metabolismo , Análisis de Secuencia de ADN , Análisis de Supervivencia , Proteínas de Unión a Tacrolimus/metabolismo , Gemcitabina
14.
Front Genet ; 3: 173, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22973297

RESUMEN

Aggregating information across multiple variants in a gene or region can improve power for rare variant association testing. Power is maximized when the aggregation region contains many causal variants and few neutral variants. In this paper, we present a method for the localization of the association signal in a region using a sliding-window based approach to rare variant association testing in a region. We first introduce a novel method for analysis of rare variants, the Difference in Minor Allele Frequency test (DMAF), which allows combined analysis of common and rare variants, and makes no assumptions about the direction of effects. In whole-region analyses of simulated data with risk and protective variants, DMAF and other methods which pool data across individuals were found to outperform methods which pool data across variants. We then implement a sliding-window version of DMAF, using a step-down permutation approach to control type I error with the testing of multiple windows. In simulations, the sliding-window DMAF improved power to detect a causal sub-region, compared to applying DMAF to the whole region. Sliding-window DMAF was also effective in localizing the causal sub-region. We also applied the DMAF sliding-window approach to test for an association between response to the drug gemcitabine and variants in the gene FKBP5 sequenced in 91 lymphoblastoid cell lines derived from white non-Hispanic individuals. The application of the sliding-window test procedure detected an association in a sub-region spanning an exon and two introns, when rare and common variants were analyzed together.

15.
Cancer Res ; 70(1): 319-28, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20048079

RESUMEN

Aromatase (CYP19) is a critical enzyme in estrogen biosynthesis and aromatase inhibitors (AI) are employed widely for endocrine therapy in postmenopausal women with breast cancer. We hypothesized that single nucleotide polymorphisms (SNPs) in the CYP19 gene may alter the effectiveness of AI therapy in the neoadjuvant setting. Genomic DNA was obtained for sequencing from 52 women pre-AI and post-AI treatment in this setting. Additionally, genomic DNA obtained from 82 samples of breast cancer and 19 samples of normal breast tissue was subjected to resequencing. No differences in CYP19 sequence were observed between tumor and germ-line DNA in the same patient. A total of 48 SNPs were identified including 4 novel SNPs when compared with previous resequencing data. For genotype-phenotype association studies, we determined the levels of aromatase activity, estrone, estradiol, and tumor size in patients pre-AI and post-AI treatment. We defined two tightly linked SNPs (rs6493497 and rs7176005 in the 5'-flanking region of CYP19 exon 1.1) that were significantly associated with a greater change in aromatase activity after AI treatment. In a follow-up study of 200 women with early-stage breast cancer who were treated with adjuvant anastrozole, these same two SNPs were also associated with higher plasma estradiol levels in patients pre-AI and post-AI treatment. Electrophoretic mobility shift and reporter gene assays confirmed likely functional effects of these two SNPs on transcription of CYP19. Our findings indicate that two common genetic polymorphisms in the aromatase gene CYP19 vary the response of breast cancer patients to aromatase inhibitors.


Asunto(s)
Inhibidores de la Aromatasa/uso terapéutico , Aromatasa/genética , Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/genética , Polimorfismo de Nucleótido Simple , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/enzimología , Ensayo de Cambio de Movilidad Electroforética , Estradiol/sangre , Femenino , Genotipo , Humanos , Terapia Neoadyuvante , Fenotipo , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA