Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Toxicon X ; 7: 100045, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32875290

RESUMEN

Animal venoms are an almost inexhaustible source for promising molecules with biological activity and the venom of Phoneutria nigriventer spider is a good example of this. Among several other toxins obtained from this venom, PnTx4(6-1), also called δ-Ctenitoxin-Pn1a, was isolated and initially described as an insect toxin that binds to the site 3 of sodium channels in cockroach nerve cord synaptosomes (Periplaneta americana) and slows down sodium current inactivation in isolated axons of this animal. This toxin did not cause any apparent toxicity to mice when intracerebroventricularly injected (30 µg). Subsequently, it was demonstrated that PnTx4(6-1) has an antinociceptive effect in three different pain models: inflammatory, induced by carrageenan; nociceptive, induced by prostaglandin E2 and neuropathic, induced by sciatic nerve constriction. Using diverse antagonists from receptors, it was shown that the cannabinoid system, via the CB1 receptor, and the opioid system, through the µ and δ receptors, are both involved in the antinociceptive effect of PnTx4(6-1). In the present work, it was synthesized a peptide, named PnAn13, based on the amino acid sequence of PnTx4(6-1) in order to try to reproduce or increase the analgesic effect of the toxin. As it was seen for the toxin, PnAn13 had antinociceptive activity, when intrathecally injected, and this effect involved the cannabinoid and opioid systems. In addition, when it was evaluated the peripheral effect of PnAn13, via intraplantar administration, this peptide was able to reverse the hyperalgesic threshold, evoked by prostaglandin E2. Therefore, using different pharmacological tools, it was shown the participation of cannabinoid and opioid systems in this effect.

2.
Artículo en Inglés | MEDLINE | ID: mdl-31467512

RESUMEN

BACKGROUND: The venom of Phoneutria nigriventer spider is a source of numerous bioactive substances, including some toxins active in insects. An example is PnTx4(5-5) that shows a high insecticidal activity and no apparent toxicity to mice, although it inhibited NMDA-evoked currents in rat hippocampal neurons. In this work the analgesic activity of PnTx4(5-5) (renamed Γ-ctenitoxin-Pn1a) was investigated. METHODS: The antinociceptive activity was evaluated using the paw pressure test in rats, after hyperalgesia induction with intraplantar injection of carrageenan or prostaglandin E2 (PGE2). RESULTS: PnTx4(5-5), subcutaneously injected, was able to reduce the hyperalgesia induced by PGE2 in rat paw, demonstrating a systemic effect. PnTx4(5-5) administered in the plantar surface of the paw caused a peripheral and dose-dependent antinociceptive effect on hyperalgesia induced by carrageenan or PGE2. The hyperalgesic effect observed in these two pain models was completely reversed with 5 µg of PnTx4(5-5). Intraplantar administration of L-glutamate induced hyperalgesic effect that was significantly reverted by 5 µg of PnTx4(5-5) injection in rat paw. CONCLUSION: The antinociceptive effect for PnTx4(5-5) was demonstrated against different rat pain models, i.e. induced by PGE2, carrageenan or glutamate. We suggest that the antinociceptive effect of PnTx4(5-5) may be related to an inhibitory activity on the glutamatergic system.

3.
Toxicon ; 149: 26-36, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28712915

RESUMEN

Temporary passive immunity such as serotherapy against venoms requires the full knowledge of all venom's components. Here, four venoms from Moroccan common yellow scorpions belonging to Buthus occitanus, subspecies tunetanus, paris, malhommei, and mardochei, all collected in four different restricted areas, were analysed in deep. They were fractionated by reversed-phase high-performance liquid chromatography (RP-HPLC) and their molecular masse profile determined by off-line MALDI-TOF mass spectrometry. Characterisation of their main components was achieved by enzyme-linked immunosorbent assay (ELISA) using specific antisera against the major lethal scorpion toxins identified so far, i.e. voltage-gated sodium channels (Nav) modulators α- and ß-toxins, as well as diverse potassium channel pore blocker toxins. For fractions with identical RP-HPLC retention times, we observe that their relative quantities show large differences. Moreover, identical masses present simultaneously in the four venoms are infrequent. ELISAs show that the majority of the RP-HPLC compounds cross-react with the antiserum against the "α-like" toxin Bot I, which has been previously identified in the Algerian Buthus occitanus tunetanus venom. Moreover, minor fractions were recognised by the antiserum against the highly lethal "classical" α-toxin of reference AaH II from the Androctonus australis venom. As such, our results bring new sights for further improving scorpion venom serotherapy in Morocco.


Asunto(s)
Antivenenos/química , Inmunización Pasiva , Venenos de Escorpión/química , Animales , Fraccionamiento Químico , Cromatografía Líquida de Alta Presión , Ensayo de Inmunoadsorción Enzimática , Masculino , Espectrometría de Masas , Ratones , Pruebas de Toxicidad
4.
Toxins (Basel) ; 8(4): 106, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27077886

RESUMEN

PnTx4(6-1), henceforth renamed δ-Ctenitoxin-Pn1a (δ-CNTX-Pn1a), a peptide from Phoneutria nigriventer spider venom, initially described as an insect toxin, binds to site 3 of sodium channels in nerve cord synaptosomes and slows down sodium current inactivation in isolated axons in cockroaches (Periplaneta americana). δ-CNTX-Pn1a does not cause any apparent toxicity to mice, when intracerebroventricularly injected (30 µg). In this study, we evaluated the antinociceptive effect of δ-CNTX-Pn1a in three animal pain models and investigated its mechanism of action in acute pain. In the inflammatory pain model, induced by carrageenan, δ-CNTX-Pn1a restored the nociceptive threshold of rats, when intraplantarly injected, 2 h and 30 min after carrageenan administration. Concerning the neuropathic pain model, δ-CNTX-Pn1a, when intrathecally administered, reversed the hyperalgesia evoked by sciatic nerve constriction. In the acute pain model, induced by prostaglandin E2, intrathecal administration of δ-CNTX-Pn1a caused a dose-dependent antinociceptive effect. Using antagonists of the receptors, we showed that the antinociceptive effect of δ-CNTX-Pn1a involves both the cannabinoid system, through CB1 receptors, and the opioid system, through µ and δ receptors. Our data show, for the first time, that δ-Ctenitoxin-Pn1a is able to induce antinociception in inflammatory, neuropathic and acute pain models.


Asunto(s)
Dolor Agudo/tratamiento farmacológico , Analgésicos/uso terapéutico , Proteínas de Artrópodos/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Péptidos/uso terapéutico , Dolor Agudo/metabolismo , Analgésicos/farmacología , Animales , Proteínas de Artrópodos/farmacología , Antagonistas de Receptores de Cannabinoides/farmacología , Carragenina , Dinoprostona , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Masculino , Antagonistas de Narcóticos/farmacología , Neuralgia/inducido químicamente , Neuralgia/metabolismo , Péptidos/farmacología , Ratas Wistar , Receptores de Cannabinoides/metabolismo , Receptores Opioides/metabolismo , Nervio Ciático/lesiones , Venenos de Araña/química , Arañas
5.
J. venom. anim. toxins incl. trop. dis ; 25: e20190022, 2019. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1012634

RESUMEN

The venom of Phoneutria nigriventer spider is a source of numerous bioactive substances, including some toxins active in insects. An example is PnTx4(5-5) that shows a high insecticidal activity and no apparent toxicity to mice, although it inhibited NMDA-evoked currents in rat hippocampal neurons. In this work the analgesic activity of PnTx4(5-5) (renamed Γ-ctenitoxin-Pn1a) was investigated. Methods: The antinociceptive activity was evaluated using the paw pressure test in rats, after hyperalgesia induction with intraplantar injection of carrageenan or prostaglandin E2 (PGE2). Results: PnTx4(5-5), subcutaneously injected, was able to reduce the hyperalgesia induced by PGE2 in rat paw, demonstrating a systemic effect. PnTx4(5-5) administered in the plantar surface of the paw caused a peripheral and dose-dependent antinociceptive effect on hyperalgesia induced by carrageenan or PGE2. The hyperalgesic effect observed in these two pain models was completely reversed with 5 µg of PnTx4(5-5). Intraplantar administration of L-glutamate induced hyperalgesic effect that was significantly reverted by 5 μg of PnTx4(5-5) injection in rat paw. Conclusion: The antinociceptive effect for PnTx4(5-5) was demonstrated against different rat pain models, i.e. induced by PGE2, carrageenan or glutamate. We suggest that the antinociceptive effect of PnTx4(5-5) may be related to an inhibitory activity on the glutamatergic system.(AU)


Asunto(s)
Venenos de Araña , Dinoprostona , Fármacos actuantes sobre Aminoácidos Excitadores , Analgésicos/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA