RESUMEN
High accuracy, reliability, and reproducibility of genetic analyses in various applications require optimized and validated protocols and standards. Optimal procedures for storing the genetic material extracted from biological samples are equally important. In this study, we investigated the stability of dilute (4000 cp/µL, nominal concentration, equivalent to 0.02 ng/mL) DNA solutions stored at 4, -20, and -80 °C in the presence or absence of nucleic acid carriers. As representative examples, we used different formulations of a linearized plasmid DNA solution considered for characterization as reference materials (RMs) for specific applications. Employing droplet digital PCR, a highly accurate and precise method for quantification of nucleic acid not requiring a calibrant, we demonstrated that inclusion of a carrier nucleic acid in the formulation (at 50 ng/µL) improved the plasmid stability at -20 and -80 °C. For the case of a DNA standard used in real-time PCR assays for human erythropoietin gene, cDNA or transcript, we found that inclusion of yeast RNA in the formulation was preferred over salmon testes DNA as it had no effect on PCR amplification and provided the lowest relative expanded uncertainty for the characterized RM. RNA background may also be preferred as it is applicable to a broader range of DNA RMs. Our findings are important in production of reliable, stable DNA standards, including DNA RMs. These results can be used when selecting protocols for stable storage of DNA either extracted from biological samples or synthesized in a laboratory.
Asunto(s)
ADN/química , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Animales , ADN/normas , Eritropoyetina/genética , Congelación , Humanos , Plásmidos , Control de Calidad , Estándares de Referencia , Reproducibilidad de los Resultados , Salmón/genética , TemperaturaRESUMEN
Digital polymerase chain reaction (dPCR) is increasingly being adopted by reference material producers and metrology institutes for value assignment, and for homogeneity and stability studies of nucleic acid reference materials. A reference method procedure should fulfill several requirements, and the uncertainty and biases should be completely understood. A bias in target concentration when inaccurate droplet volume is used in the droplet dPCR measurement equation has previously been documented. In this study, we characterize both intrawell and interwell droplet volume variability using optical microscopy and determine the impact of these two sources of variability on target concentration estimates. A small optical distortion across the image was measured which, without correction, biased droplet volume measurements. Longitudinal monitoring of interwell droplet volume over 39 weeks using several lots of Mastermix demonstrated a mean droplet volume of 0.786 nL and intermediate precision of 1.7%. The frequency distribution of intrawell droplet volumes varied. Some wells displayed a skewed distribution which resulted in a small bias in estimated target concentration for a simulated dPCR with target concentrations of between 62 and 8000 copies µL-1. The size and direction of this bias was influenced by the distribution pattern of the droplet volumes within the well. The proportion of Mastermix in dPCR mix affected droplet volume. A pipetting error of 10% during mixing of the premix and Mastermix resulted in a 2.6% change in droplet volume and, consequently, a bias in concentration measurements highlighting the advantages of gravimetric preparation of dPCR mixes for high accuracy measurements.
Asunto(s)
Variaciones en el Número de Copia de ADN , Ácidos Nucleicos/análisis , Reacción en Cadena de la Polimerasa/métodos , HumanosRESUMEN
Use of droplet digital PCR technology (ddPCR) is expanding rapidly in the diversity of applications and number of users around the world. Access to relatively simple and affordable commercial ddPCR technology has attracted wide interest in use of this technology as a molecular diagnostic tool. For ddPCR to effectively transition to a molecular diagnostic setting requires processes for method validation and verification and demonstration of reproducible instrument performance. In this study, we describe the development and characterization of a DNA reference material (NMI NA008 High GC reference material) comprising a challenging methylated GC-rich DNA template under a novel 96-well microplate format. A scalable process using high precision acoustic dispensing technology was validated to produce the DNA reference material with a certified reference value expressed in amount of DNA molecules per well. An interlaboratory study, conducted using blinded NA008 High GC reference material to assess reproducibility among seven independent laboratories demonstrated less than 4.5% reproducibility relative standard deviation. With the exclusion of one laboratory, laboratories had appropriate technical competency, fully functional instrumentation, and suitable reagents to perform accurate ddPCR based DNA quantification measurements at the time of the study. The study results confirmed that NA008 High GC reference material is fit for the purpose of being used for quality control of ddPCR systems, consumables, instrumentation, and workflow.
Asunto(s)
ADN/normas , Reacción en Cadena de la Polimerasa/normas , Estándares de Referencia , Reproducibilidad de los ResultadosRESUMEN
Enumeration-based determination of DNA copy-concentration was assessed through an international comparison among national metrology institutes (NMIs) and designated institutes (DIs). Enumeration-based quantification does not require a calibration standard thereby providing a route to "absolute quantification", which offers the potential for reliable value assignments of DNA reference materials, and International System of Units (SI) traceability to copy number 1 through accurate counting. In this study, 2 enumeration-based methods, flow cytometric (FCM) counting and the digital polymerase chain reaction (dPCR), were compared to quantify a solution of the pBR322 plasmid at a concentration of several thousand copies per microliter. In addition, 2 orthogonal chemical-analysis methods based on nucleotide quantification, isotope-dilution mass spectrometry (IDMS) and capillary electrophoresis (CE) were applied to quantify a more concentrated solution of the plasmid. Although 9 dPCR results from 8 laboratories showed some dispersion (relative standard deviation [RSD] = 11.8%), their means were closely aligned with those of the FCM-based counting method and the orthogonal chemical-analysis methods, corrected for gravimetric dilution factors. Using the means of dPCR results, the RSD of all 4 methods was 1.8%, which strongly supported the validity of the recent enumeration approaches. Despite a good overall agreement, the individual dPCR results were not sufficiently covered by the reported measurement uncertainties. These findings suggest that some laboratories may not have considered all factors contributing to the measurement uncertainty of dPCR, and further investigation of this possibility is warranted.
Asunto(s)
ADN/análisis , Citometría de Flujo/métodos , Plásmidos/análisis , Reacción en Cadena de la Polimerasa/métodos , Electroforesis Capilar , Espectrometría de Masas , Nucleótidos/análisisRESUMEN
The value assignment for properties of six certified reference materials (ERM-AD623a-f), each containing a plasmid DNA solution ranging from 1 million to 10 copies per µL, by using digital PCR (dPCR) with the BioMark™ HD System (Fluidigm) has been verified by applying droplet digital PCR (ddPCR) using the QX100 system (Bio-Rad). One of the critical factors in the measurement of copy number concentrations by digital PCR is the partition volume. Therefore, we determined the average droplet volume by optical microscopy, revealing an average droplet volume that is 8 % smaller than the droplet volume used as the defined parameter in the QuantaSoft software version 1.3.2.0 (Bio-Rad) to calculate the copy number concentration. This observation explains why copy number concentrations estimated with ddPCR and using an average droplet volume predefined in the QuantaSoft software were systematically lower than those measured by dPCR, creating a significant bias between the values obtained by these two techniques. The difference was not significant anymore when the measured droplet volume of 0.834 nL was used to estimate copy number concentrations. A new version of QuantaSoft software (version 1.6.6.0320), which has since been released with Bio-Rad's new QX200 systems and QX100 upgrades, uses a droplet volume of 0.85 nL as a defined parameter to calculate copy number concentration.
Asunto(s)
Variaciones en el Número de Copia de ADN , Reacción en Cadena de la Polimerasa/métodos , Estándares de ReferenciaRESUMEN
BACKGROUND: DNA methylation biomarkers capable of diagnosis and subtyping have been found for many cancers. Fifteen such markers have previously been identified for pediatric acute lymphoblastic leukemia (ALL). Validation of these markers is necessary to assess their clinical utility for molecular diagnostics. Substantial efficiencies could be achieved with these DNA methylation markers for disease tracking with potential to replace patient-specific genetic testing. METHODS: We evaluated DNA methylation of promoter regions of TLX3 (T-cell leukemia homeobox) and FOXE3 (forkhead box E3) in bone marrow biopsies from 197 patients classified as leukemic (n = 95) or clear of the disease (n = 102) by MALDI-TOF. Using a single nucleotide extension assay (methylSABER), we tested 10 bone marrow biopsies collected throughout the course of patient chemotherapy. Using reference materials, diagnostic thresholds and limits of detection were characterized for both methods. RESULTS: Reliable detection of DNA methylation of TLX3 and FOXE3 segregated ALL from those clear of disease with minimal false-negative and false-positive results. The limit of detection with MALDI-TOF was 1000-5000 copies of methylated allele. For methylSABER, the limit of detection was 10 copies of methylated TLX3, which enabled monitoring of minimal residual disease in ALL patients. CONCLUSIONS: Mass spectrometry procedures can be used to regionally multiplex and detect rare DNA methylation events, establish DNA methylation loci as clinically applicable biomarkers for disease diagnosis, and track pediatric ALL.
Asunto(s)
Metilación de ADN , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Adolescente , Estudios de Casos y Controles , Niño , Preescolar , Reacciones Falso Negativas , Reacciones Falso Positivas , Femenino , Factores de Transcripción Forkhead/genética , Dosificación de Gen , Marcadores Genéticos , Proteínas de Homeodominio/genética , Humanos , Lactante , Límite de Detección , Masculino , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Regiones Promotoras Genéticas , Estándares de Referencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
Hypermethylation at promoter regions of tumour suppressor genes is diagnostic for many cancers. Many genomic regions that may be the targets for clinical diagnostic assays have been identified through use of measuring systems reliant on bisulphite conversion, but few of these promising markers are in clinical use. The comparability of a widely used DNA methylation measuring system involving bisulphite conversion was evaluated by supplying three experienced centres with methylated DNA reference material mixtures that were independently prepared and characterised by mass spectrometry and high-pressure liquid chromatography. A replication scheme was designed to evaluate reproducibility of key analytical steps within and between laboratories by regression analysis. In general, methylation was underestimated and methylation ratio values were highly variable. The difference in methylation ratio between CpG sites was the key contributor to variable results. The CpG site effect followed a similar pattern at all centres and at all methylation levels examined indicating that sequence context had a major effect on methylation ratio measurement using the bisulphite conversion process. The magnitude of underestimation combined with the variability of measurements between CpG sites compromises the concept of measuring genomic regional methylation by averaging the methylation ratios of many CpG sites. There were no significant differences in replicate bisulphite conversions or sample work-up and instrument analysis at each centre thus making this technique suitable for comparative intralaboratory investigations. However, it may not be suitable for a routine diagnostic assay without extensive standardisation efforts.
Asunto(s)
Metilación de ADN , ADN/genética , Genes p16 , Neoplasias/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Secuencia de Bases , Cromatografía Líquida de Alta Presión/métodos , Islas de CpG , ADN/análisis , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/métodos , Sulfitos/químicaRESUMEN
Digital polymerase chain reaction (dPCR) is potentially a primary method for quantifying target DNA regions in a background of nontarget material and is independent of external calibrators. Accurate dPCR measurements require single-molecule detection by conventional PCR assays that may be subject to bias due to inhibition, interference, or sequence-derived PCR inefficiency. Elimination or control of such biases is essential for validation of PCR assays, but this may require a substantial investment in resources. Here we present a mechanism for DNA quantification that does not require PCR assay validation in situations where target DNA quantity is high enough to be measured by physical techniques such as quantitative high-performance liquid chromatography (HPLC) or electrophoresis. A commercially available DNA marker derived from pUC19 was quantified by dPCR and was then used to calibrate an HPLC measuring system for quantifying a DNA amplicon that had a high content of guanidine and cytidine. The dPCR-calibrated HPLC measurement was verified by independent measurement using isotope dilution mass spectrometry (IDMS). HPLC quantification, calibrated with dPCR or IDMS measured DNA markers, provides an effective method for certifying the quantity of genetic reference materials that may be difficult to analyze by PCR. These secondary reference materials may then be used to validate and calibrate quantitative PCR measurements and thus could expand the breadth of applications for which traceability to the International System of Units is possible.
Asunto(s)
ADN/análisis , Marcadores Genéticos , Reacción en Cadena de la Polimerasa/métodos , Procesamiento de Señales Asistido por Computador , Calibración , Cromatografía Líquida de Alta Presión/métodos , Marcadores Genéticos/fisiología , HumanosRESUMEN
There is growing interest in digital PCR (dPCR) because technological progress makes it a practical and increasingly affordable technology. dPCR allows the precise quantification of nucleic acids, facilitating the measurement of small percentage differences and quantification of rare variants. dPCR may also be more reproducible and less susceptible to inhibition than quantitative real-time PCR (qPCR). Consequently, dPCR has the potential to have a substantial impact on research as well as diagnostic applications. However, as with qPCR, the ability to perform robust meaningful experiments requires careful design and adequate controls. To assist independent evaluation of experimental data, comprehensive disclosure of all relevant experimental details is required. To facilitate this process we present the Minimum Information for Publication of Quantitative Digital PCR Experiments guidelines. This report addresses known requirements for dPCR that have already been identified during this early stage of its development and commercial implementation. Adoption of these guidelines by the scientific community will help to standardize experimental protocols, maximize efficient utilization of resources, and enhance the impact of this promising new technology.
Asunto(s)
Computadores/normas , Guías como Asunto , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Computadores/estadística & datos numéricosRESUMEN
Success in gene therapy in treating human disease makes this technology attractive to enhance athletic performance, creating the need for gene doping detection. In 2021, World Anti-Doping Agency (WADA) approved the first gene doping test. Here, we describe a new method to detect doping with four additional genes, follistatin, growth hormone 1, growth hormone-releasing hormone and insulin-like growth factor 1, that may improve performance by increasing muscle size and strength. The method utilises four hydrolysis probe-based polymerase chain reaction (PCR) assays that target the transgenes based on the coding sequence of the four endogenous genes. The assays are specific, reproducible and capable to detect five copies of transgene in the presence of very similar endogenous gene in 25,000 times excess. To underpin reliable and comparable routine method performance by doping testing laboratories, a synthetic reference material for the method was designed and generated following the ISO Guide 35. The complete method was validated in blood samples using plasma as extraction matrix and QIAamp DNA blood midi DNA extraction kit. All blood samples from different donors (n = 8) simulated to be negative or positive (1500 transgene copies spiked per millilitre of blood) for the transgenes were reported correctly. The new method that targets four additional genes will extend the capabilities of laboratories involved in doping control to protect athletes' health, fairness and equality.
Asunto(s)
Atletas , Doping en los Deportes , Humanos , Transgenes , Reacción en Cadena de la Polimerasa/métodos , Terapia Genética , ADNRESUMEN
Droplet digital polymerase chain reaction (ddPCR) is a new technology that was recently commercialized to enable the precise quantification of target nucleic acids in a sample. ddPCR measures absolute quantities by counting nucleic acid molecules encapsulated in discrete, volumetrically defined, water-in-oil droplet partitions. This novel ddPCR format offers a simple workflow capable of generating highly stable partitioning of DNA molecules. In this study, we assessed key performance parameters of the ddPCR system. A linear ddPCR response to DNA concentration was obtained from 0.16% through to 99.6% saturation in a 20,000 droplet assay corresponding to more than 4 orders of magnitude of target DNA copy number per ddPCR. Analysis of simplex and duplex assays targeting two distinct loci in the Lambda DNA genome using the ddPCR platform agreed, within their expanded uncertainties, with values obtained using a lower density microfluidic chamber based digital PCR (cdPCR). A relative expanded uncertainty under 5% was achieved for copy number concentration using ddPCR. This level of uncertainty is much lower than values typically observed for quantification of specific DNA target sequences using currently commercially available real-time and digital cdPCR technologies.
Asunto(s)
Bacteriófago lambda/genética , Variaciones en el Número de Copia de ADN , ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Reacción en Cadena de la Polimerasa , GenomaRESUMEN
Digital polymerase chain reaction (dPCR) has the potential to enable accurate quantification of target DNA copy number provided that all target DNA molecules are successfully amplified. Following duplex dPCR analysis from a linear DNA target sequence that contains single copies of two independent template sequences, we have observed that amplification of both templates in a single partition does not always occur. To investigate this finding, we heated the target DNA solution to 95 °C for increasing time intervals and then immediately chilled on ice prior to preparing the dPCR mix. We observed an exponential decline in estimated copy number (R(2)≥ 0.98) of the two template sequences when amplified from either a linearized plasmid or a 388 base pair (bp) amplicon containing the same two template sequences. The distribution of amplifiable templates and the final concentration (copies per µL) were both affected by heat treatment of the samples at 95 °C from 0 s to 30 min. The proportion of target sequences from which only one of the two templates was amplified in a single partition (either 1507 or hmg only) increased over time, while the proportion of target sequences where both templates were amplified (1507 and hmg) in each individual partition declined rapidly from 94% to 52% (plasmid) and 88% to 31% (388 bp amplicon) suggesting an increase in number of targets from which both templates no longer amplify. A 10 min incubation at 95 °C reduced the initial amplifiable template concentration of the plasmid and the 388 bp amplicon by 59% and 91%, respectively. To determine if a similar decrease in amplifiable target occurs during the default pre-activation step of typical PCR amplification protocol, we used mastermixes with a 20 s or 10 min hot-start. The choice of mastermix and consequent pre-activation time did not affect the estimated plasmid concentration. Therefore, we conclude that prolonged exposure of this DNA template to elevated temperatures could lead to significant bias in dPCR measurements. However, care must be taken when designing PCR and non-PCR based experiments by reducing exposure of the DNA template to sustained elevated temperatures in order to improve accuracy in copy number estimation and concentration determination.
Asunto(s)
Artefactos , Dosificación de Gen/genética , Calor , Reacción en Cadena de la Polimerasa/métodos , Secuencia de Bases , ADN de Plantas/química , ADN de Plantas/genética , Desnaturalización de Ácido Nucleico , Factores de Tiempo , Zea mays/genéticaRESUMEN
A method of calibration for real-time quantitative polymerase chain reaction (qPCR) experiments based on the method of standard additions combined with non-linear curve fitting is described. The method is tested by comparing the results of a traditionally calibrated qPCR experiment with the standard additions experiment in the presence of 2 mM EDTA, a known inhibitor chosen to provide an unambiguous test of the principle by inducing an approximately twofold bias in apparent copy number calculated using traditional calibration. The standard additions method is shown to substantially reduce inhibitor-induced bias in quantitative real-time qPCR.
Asunto(s)
Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Brassica/genética , ADN de Plantas/genética , Ácido Edético/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodosRESUMEN
Accurate estimation of total DNA concentration (mass concentration, e.g., ng/muL) that is traceable to the International System of Units (SI) is a crucial starting point for improving reproducible measurements in many applications involving nucleic acid testing and requires a DNA reference material which has been certified for its total DNA concentration. In this study, the concentrations of six different lambda DNA preparations were determined using different measurement platforms: UV Absorbance at 260 nm (A(260)) with and without prior sodium hydroxide (NaOH) treatment of the DNA, PicoGreen assay, and digital polymerase chain reaction (dPCR). DNA concentration estimates by A(260) with and without prior NaOH treatment were significantly different for five of the six samples tested. There were no significant differences in concentration estimates based on A(260) with prior NaOH treatment, PicoGreen analysis, and dPCR for two of the three samples tested using dPCR. Since the measurand in dPCR is amount (copy number) concentration (copies/muL), the results suggest that accurate estimation of DNA mass concentration based on copy number concentration is achievable provided the DNA is fully characterized and in the double-stranded form or amplification is designed to be initiated from only one of the two complementary strands.
Asunto(s)
ADN/análisis , Fluorometría/métodos , Reacción en Cadena de la Polimerasa/métodos , Espectrofotometría Ultravioleta/métodos , Colorantes Fluorescentes/química , Compuestos Orgánicos/química , Reproducibilidad de los ResultadosRESUMEN
Quantitative analysis of genetically modified (GM) foods requires estimation of the amount of the transgenic event relative to an endogenous gene. Regulatory authorities in the European Union (EU) have defined the labelling threshold for GM food on the copy number ratio between the transgenic event and an endogenous gene. Real-time polymerase chain reaction (PCR) is currently being used for quantification of GM organisms (GMOs). Limitations in real-time PCR applications to detect very low number of DNA targets has led to new developments such as the digital PCR (dPCR) which allows accurate measurement of DNA copies without the need for a reference calibrator. In this paper, the amount of maize MON810 and hmg copies present in a DNA extract from seed powders certified for their mass content and for their copy number ratio was measured by dPCR. The ratio of these absolute copy numbers determined by dPCR was found to be identical to the ratios measured by real-time quantitative PCR (qPCR) using a plasmid DNA calibrator. These results indicate that both methods could be applied to determine the copy number ratio in MON810. The reported values were in agreement with estimations from a model elaborated to convert mass fractions into copy number fractions in MON810 varieties. This model was challenged on two MON810 varieties used for the production of MON810 certified reference materials (CRMs) which differ in the parental origin of the introduced GM trait. We conclude that dPCR has a high metrological quality and can be used for certifying GM CRMs in terms of DNA copy number ratio.
Asunto(s)
Plantas Modificadas Genéticamente/genética , Reacción en Cadena de la Polimerasa/métodos , Zea mays/genética , ADN de Plantas/genéticaRESUMEN
Current screening and event-specific polymerase chain reaction (PCR) assays for the detection and identification of genetically modified organisms (GMOs) in samples of unknown composition or for the detection of non-regulated GMOs have limitations, and alternative approaches are required. A transgenic DNA fingerprinting methodology using restriction enzyme digestion, adaptor ligation, and nested PCR was developed where individual GMOs are distinguished by the characteristic fingerprint pattern of the fragments generated. The inter-laboratory reproducibility of the amplified fragment sizes using different capillary electrophoresis platforms was compared, and reproducible patterns were obtained with an average difference in fragment size of 2.4 bp. DNA insert fingerprints for 12 different maize events, including two maize hybrids and one soy event, were generated that reflected the composition of the transgenic DNA constructs. Once produced, the fingerprint profiles were added to a database which can be readily exchanged and shared between laboratories. This approach should facilitate the process of GMO identification and characterization.
Asunto(s)
Dermatoglifia del ADN/métodos , Glycine max/genética , Plantas Modificadas Genéticamente/genética , Zea mays/genética , Secuencia de Bases , ADN de Plantas/química , ADN de Plantas/genética , Ingeniería Genética , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente/química , Reacción en Cadena de la Polimerasa , Alineación de Secuencia , Glycine max/química , Zea mays/químicaRESUMEN
The increased presence of 5-methycytosine at gene promoter regions may be diagnostic of cancer. However, there are many stages in the measurement of gene promoter 5-methylcytosine content where inaccuracies may occur, and this may prevent the use of these measurements for diagnostic or prognostic purposes. A high accuracy LC-MS system was developed for measuring the degree of methylation in two 100 base pair amplicons generated by the polymerase chain reaction (PCR) and in which 5-methylcytidine had been synthetically incorporated. Nucleotide monophosphate reference materials were used to calibrate the peak area ratio of cytidine and 5-methylcytidine to their mole ratio in enzymatic hydrolysates of the amplicons, thus enabling metrological traceability of the methylation ratio to the mole. The methylation values obtained agreed closely with the reference values assigned to the materials. A measurement uncertainty budget was completed and showed that the moisture content of the nucleotide monophosphate reference materials was the largest source of uncertainty in the methylation ratio measurement. Measurement of an oligonucleotide supplied with the materials provided evidence that such materials may be used for calibration of DNA methylation ratios without the need for measurement of moisture content. This raises the possibility that submicrogram amounts of appropriately characterized oligonucleotide reference materials could be used to calibrate methylation ratios obtained by contemporary methodologies (such as PCR after bisulfite conversion of genomic DNA) yielding values that are traceable to the International System of Units (SI). Such calibrated gene methylation measurements would then be internationally comparable as required for effective diagnostic and prognostic measurements.
Asunto(s)
Cromatografía Liquida/métodos , Citidina/análogos & derivados , Metilación de ADN , ADN/análisis , Espectrometría de Masas/métodos , Técnicas Biosensibles/métodos , Calibración , Citidina/análisis , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
Various methods have been developed for quantitative analysis of DNA methylation. However, there is currently no reference analysis system regarding DNA methylation with which other analytical approaches can be compared and evaluated. A standard measurement system that includes reference methods and reference materials may improve comparability and credibility of data obtained from different analytical environments. In an effort to establish a standard system for measurement of DNA methylation, the Korea Research Institute of Standards and Science (KRISS) coordinated an international comparison study among different national metrology institutes. An initial stage of the study involved an intercomparison regarding quantitative measurement of total methyl cytosine contents in artificially constructed DNA samples. The measurement principle involved measurement of dNMP contents following enzymatic hydrolysis of DNA samples. Results of the study showed good comparability among four of five participants and close agreement with reference values assigned by the coordinating laboratory. Conflicting data from one participant may have resulted from incomplete hydrolysis of samples due to use of insufficient amounts of enzymes. These results indicate that comparable and accurate results can be obtained from different measurement environments if digestion conditions are controlled appropriately and valid calibration systems are employed.
Asunto(s)
Citosina/análogos & derivados , Citosina/análisis , Metilación de ADN , Desoxirribonucleótidos/química , Electroforesis Capilar , Hidrólisis , Estándares de ReferenciaRESUMEN
Digital polymerase chain reaction (PCR) is a promising technique for estimating target DNA copy number. PCR solution is distributed throughout numerous partitions, and following amplification, target DNA copy number is estimated based on the proportion of partitions containing amplified DNA. Here, we identify approaches for obtaining reliable digital PCR data. Single molecule amplification efficiency was significantly improved following fragmentation of total DNA and bias in copy number estimates reduced by analysis of short intact target DNA fragments. Random and independent distribution of target DNA molecules throughout partitions, which is critical to accurate digital PCR measurement, was demonstrated by spatial distribution analysis. The estimated relative uncertainty for target DNA concentration was under 6% when analyzing five digital panels comprising 765 partitions each, provided the panels contained an average of 212 to 3,365 template molecules. Partition volume was a major component of this uncertainty estimate. These findings can be applied to other digital PCR studies to improve confidence in such measurements.
Asunto(s)
ADN/análisis , ADN/genética , Dosificación de Gen/genética , Microfluídica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Simulación por ComputadorRESUMEN
Real-time quantitative polymerase chain reaction (qPCR) is the industry standard technique for the quantitative analysis of nucleic acids due to its unmatched sensitivity and specificity. Optimisation and improvements of this fundamental technique over the past decade have largely consisted of attempts to allow faster and more accurate ramping between critical temperatures by improving assay reagents and the thermal geometry of the PCR chamber. Small gold nanoparticles (Au-NPs) have been reported to improve PCR yield under fast cycling conditions. In this study, we investigated the effect of Au-NPs on optimised real-time qPCR assays by amplifying DNA sequences from genetically modified canola in the presence and absence of 0.9 nM Au-NPs of diameter 12 +/- 2 nm. Contrary to expectations, we found that Au-NPs altered the PCR amplification profile when using a SYBR Green I detection system due to fluorescence quenching; furthermore, high-resolution melt (HRM) analysis demonstrated that Au-NPs destabilised the double-stranded PCR product. The results indicate that effects on the assay detection system must be carefully evaluated before Au-NPs are included in any qPCR assay.