Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R293-R304, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36622084

RESUMEN

Vascular insulin resistance, a major characteristic of obesity and type 2 diabetes (T2D), manifests with blunting of insulin-induced vasodilation. Although there is evidence that females are more whole body insulin sensitive than males in the healthy state, whether sex differences exist in vascular insulin sensitivity is unclear. Also uncertain is whether weight loss can reestablish vascular insulin sensitivity in T2D. The purpose of this investigation was to 1) establish if sex differences in vasodilatory responses to insulin exist in absence of disease, 2) determine whether female sex affords protection against the development of vascular insulin resistance with long-term overnutrition and obesity, and 3) examine if diet-induced weight loss can restore vascular insulin sensitivity in men and women with T2D. First, we show in healthy mice and humans that sex does not influence insulin-induced femoral artery dilation and insulin-stimulated leg blood flow, respectively. Second, we provide evidence that female mice are protected against impairments in insulin-induced dilation caused by overnutrition-induced obesity. Third, we show that men and women exhibit comparable levels of vascular insulin resistance when T2D develops but that diet-induced weight loss is effective at improving insulin-stimulated leg blood flow, particularly in women. Finally, we provide indirect evidence that these beneficial effects of weight loss may be mediated by a reduction in endothelin-1. In aggregate, the present data indicate that female sex confers protection against obesity-induced vascular insulin resistance and provide supportive evidence that, in women with T2D, vascular insulin resistance can be remediated with diet-induced weight loss.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Femenino , Masculino , Ratones , Animales , Resistencia a la Insulina/fisiología , Insulina , Obesidad , Pérdida de Peso , Arteria Femoral , Dieta
2.
Physiol Genomics ; 54(7): 261-272, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35648460

RESUMEN

Limited reports exist regarding adeno-associated virus (AAV) biodistribution in swine. This study assessed biodistribution following antegrade intracoronary and intravenous delivery of two self-complementary serotype 9 AAV (AAV9sc) biologics designed to target signaling in the cardiomyocyte considered important for the development of heart failure. Under the control of a cardiomyocyte-specific promoter, AAV9sc.shmAKAP and AAV9sc.RBD express a small hairpin RNA for the perinuclear scaffold protein muscle A-kinase anchoring protein ß (mAKAPß) and an anchoring disruptor peptide for p90 ribosomal S6 kinase type 3 (RSK3), respectively. Quantitative PCR was used to assess viral genome (vg) delivery and transcript expression in Ossabaw and Yorkshire swine tissues. Myocardial viral delivery was 2-5 × 105 vg/µg genomic DNA (gDNA) for both infusion techniques at a dose ∼1013 vg/kg body wt, demonstrating delivery of ∼1-3 viral particles per cardiac diploid genome. Myocardial RNA levels for each expressed transgene were generally proportional to dose and genomic delivery, and comparable with levels for moderately expressed endogenous genes. Despite significant AAV9sc delivery to other tissues, including the liver, neither biologic induced toxic effects as assessed using functional, structural, and circulating cardiac and systemic markers. These results indicate successful targeted delivery of cardiomyocyte-selective viral vectors in swine without negative side effects, an important step in establishing efficacy in a preclinical experimental setting.


Asunto(s)
Dependovirus , Miocitos Cardíacos , Animales , Dependovirus/genética , Técnicas de Transferencia de Gen , Vectores Genéticos , Infusiones Intravenosas , Miocitos Cardíacos/metabolismo , Serogrupo , Porcinos , Distribución Tisular
3.
Physiol Genomics ; 53(3): 99-115, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33491589

RESUMEN

Heart failure (HF) patients with deteriorating right ventricular (RV) structure and function have a nearly twofold increased risk of death compared with those without. Despite the well-established clinical risk, few studies have examined the molecular signature associated with this HF condition. The purpose of this study was to integrate morphological, molecular, and functional data with the transcriptome data set in the RV of a preclinical model of cardiometabolic HF. Ossabaw swine were fed either normal diet without surgery (lean control, n = 5) or Western diet and aortic-banding (WD-AB; n = 4). Postmortem RV weight was increased and positively correlated with lung weight in the WD-AB group compared with CON. Total RNA-seq was performed and gene expression profiles were compared and analyzed using principal component analysis, weighted gene co-expression network analysis, module enrichment analysis, and ingenuity pathway analysis. Gene networks specifically associated with RV hypertrophic remodeling identified a hub gene in MAPK8 (or JNK1) that was associated with the selective induction of the extracellular matrix (ECM) component fibronectin. JNK1 and fibronectin protein were increased in the right coronary artery (RCA) of WD-AB animals and associated with a decrease in matrix metalloproteinase 14 protein, which specifically degrades fibronectin. RCA fibronectin content was correlated with increased vascular stiffness evident as a decreased elastin elastic modulus in WD-AB animals. In conclusion, this study establishes a molecular and transcriptome signature in the RV using Ossabaw swine with cardiometabolic HF. This signature was associated with altered ECM regulation and increased vascular stiffness in the RCA, with selective dysregulation of fibronectin.


Asunto(s)
Vasos Coronarios/metabolismo , Perfilación de la Expresión Génica/métodos , Insuficiencia Cardíaca/genética , Miocardio/metabolismo , Transcriptoma , Remodelación Ventricular/genética , Animales , Dieta Occidental , Femenino , Ontología de Genes , Redes Reguladoras de Genes , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Humanos , RNA-Seq/métodos , Transducción de Señal/genética , Porcinos
4.
Circulation ; 142(22): 2138-2154, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32933333

RESUMEN

BACKGROUND: Concentric and eccentric cardiac hypertrophy are associated with pressure and volume overload, respectively, in cardiovascular disease both conferring an increased risk of heart failure. These contrasting forms of hypertrophy are characterized by asymmetrical growth of the cardiac myocyte in mainly width or length, respectively. The molecular mechanisms determining myocyte preferential growth in width versus length remain poorly understood. Identification of the mechanisms governing asymmetrical myocyte growth could provide new therapeutic targets for the prevention or treatment of heart failure. METHODS: Primary adult rat ventricular myocytes, adeno-associated virus (AAV)-mediated gene delivery in mice, and human tissue samples were used to define a regulatory pathway controlling pathological myocyte hypertrophy. Chromatin immunoprecipitation assays with sequencing and precision nuclear run-on sequencing were used to define a transcriptional mechanism. RESULTS: We report that asymmetrical cardiac myocyte hypertrophy is modulated by SRF (serum response factor) phosphorylation, constituting an epigenomic switch balancing the growth in width versus length of adult ventricular myocytes in vitro and in vivo. SRF Ser103 phosphorylation is bidirectionally regulated by RSK3 (p90 ribosomal S6 kinase type 3) and PP2A (protein phosphatase 2A) at signalosomes organized by the scaffold protein mAKAPß (muscle A-kinase anchoring protein ß), such that increased SRF phosphorylation activates AP-1 (activator protein-1)-dependent enhancers that direct myocyte growth in width. AAV are used to express in vivo mAKAPß-derived RSK3 and PP2A anchoring disruptor peptides that block the association of the enzymes with the mAKAPß scaffold. Inhibition of RSK3 signaling prevents concentric cardiac remodeling induced by pressure overload, while inhibition of PP2A signaling prevents eccentric cardiac remodeling induced by myocardial infarction, in each case improving cardiac function. SRF Ser103 phosphorylation is significantly decreased in dilated human hearts, supporting the notion that modulation of the mAKAPß-SRF signalosome could be a new therapeutic approach for human heart failure. CONCLUSIONS: We have identified a new molecular switch, namely mAKAPß signalosome-regulated SRF phosphorylation, that controls a transcriptional program responsible for modulating changes in cardiac myocyte morphology that occur secondary to pathological stressors. Complementary AAV-based gene therapies constitute rationally-designed strategies for a new translational modality for heart failure.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Aumento de la Célula , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Factor de Respuesta Sérica/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Adenoviridae/genética , Animales , Animales Recién Nacidos , Células Cultivadas , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/patología , Fosforilación/fisiología , Ratas , Ratas Sprague-Dawley
5.
Am J Physiol Heart Circ Physiol ; 319(5): H1036-H1043, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32946285

RESUMEN

The small heat shock protein 20 (HSPB6) emerges as a potential upstream mediator of autophagy. Although autophagy is linked to several clinical disorders, how HSPB6 and autophagy are regulated in the setting of heart failure (HF) remains unknown. The goal of this study was to assess the activation of the HSPB6 and its association with other well-established autophagy markers in central and peripheral tissues from a preclinical Ossabaw swine model of cardiometabolic HF induced by Western diet and chronic cardiac pressure overload. We hypothesized HSPB6 would be activated in central and peripheral tissues, stimulating autophagy. We found that autophagy in the heart is interrupted at various stages of the process in a chamber-specific manner. Protein levels of HSPB6, Beclin 1, and p62 are increased in the right ventricle, whereas only HSPB6 was increased in the left ventricle. Unlike the heart, samples from the triceps brachii long head showed only an increase in the protein level of p62, highlighting interesting central versus peripheral differences in autophagy regulation. In the right coronary artery, total HSPB6 protein expression was decreased and associated with an increase in LC3B-II/LC3B-I ratio, demonstrating a different mechanism of autophagy dysregulation in the coronary vasculature. Thus, contrary to our hypothesis, activation of HSPB6 was differentially regulated in a tissue-specific manner and observed in parallel with variable states of autophagy markers assessed by protein levels of LC3B, p62, and Beclin 1. Our data provide insight into how the HSPB6/autophagy axis is regulated in a preclinical swine model with potential relevance to heart failure with preserved ejection fraction.NEW & NOTEWORTHY Our study shows that the activation of HSPB6 is tissue specific and associated with variable states of downstream markers of autophagy in a unique preclinical swine model of cardiometabolic HF with potential relevance to HFpEF. These findings suggest that targeted approaches could be an important consideration regarding the development of drugs aimed at this intracellular recycling process.


Asunto(s)
Autofagia , Proteínas del Choque Térmico HSP20/metabolismo , Insuficiencia Cardíaca/metabolismo , Síndrome Metabólico/metabolismo , Animales , Beclina-1/genética , Beclina-1/metabolismo , Vasos Coronarios/metabolismo , Femenino , Proteínas del Choque Térmico HSP20/genética , Insuficiencia Cardíaca/etiología , Síndrome Metabólico/complicaciones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Porcinos
6.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937927

RESUMEN

Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are pivotal regulators of extracellular matrix (ECM) composition and could, due to their dynamic activity, function as prognostic tools for fibrosis and cardiac function in left ventricular diastolic dysfunction (LVDD) and heart failure with preserved ejection fraction (HFpEF). We conducted a systematic review on experimental animal models of LVDD and HFpEF published in MEDLINE or Embase. Twenty-three studies were included with a total of 36 comparisons that reported established LVDD, quantification of cardiac fibrosis and cardiac MMP or TIMP expression or activity. LVDD/HFpEF models were divided based on underlying pathology: hemodynamic overload (17 comparisons), metabolic alteration (16 comparisons) or ageing (3 comparisons). Meta-analysis showed that echocardiographic parameters were not consistently altered in LVDD/HFpEF with invasive hemodynamic measurements better representing LVDD. Increased myocardial fibrotic area indicated comparable characteristics between hemodynamic and metabolic models. Regarding MMPs and TIMPs; MMP2 and MMP9 activity and protein and TIMP1 protein levels were mainly enhanced in hemodynamic models. In most cases only mRNA was assessed and there were no correlations between cardiac tissue and plasma levels. Female gender, a known risk factor for LVDD and HFpEF, was underrepresented. Novel studies should detail relevant model characteristics and focus on MMP and TIMP protein expression and activity to identify predictive circulating markers in cardiac ECM remodeling.


Asunto(s)
Matriz Extracelular/metabolismo , Insuficiencia Cardíaca/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Remodelación Ventricular/fisiología , Animales , Humanos , Función Ventricular Izquierda/fisiología
7.
J Physiol ; 597(1): 57-69, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30328623

RESUMEN

KEY POINTS: It has been postulated that increased blood flow-associated shear stress on endothelial cells is an underlying mechanism by which physical activity enhances insulin-stimulated vasodilatation. This report provides evidence supporting the hypothesis that increased shear stress exerts insulin-sensitizing effects in the vasculature and this evidence is based on experiments in vitro in endothelial cells, ex vivo in isolated arterioles and in vivo in humans. Given the recognition that vascular insulin signalling, and associated enhanced microvascular perfusion, contributes to glycaemic control and maintenance of vascular health, strategies that stimulate an increase in limb blood flow and shear stress have the potential to have profound metabolic and vascular benefits mediated by improvements in endothelial insulin sensitivity. ABSTRACT: The vasodilator actions of insulin contribute to glucose uptake by skeletal muscle, and previous studies have demonstrated that acute and chronic physical activity improves insulin-stimulated vasodilatation and glucose uptake. Because this effect of exercise primarily manifests in vascular beds highly perfused during exercise, it has been postulated that increased blood flow-associated shear stress on endothelial cells is an underlying mechanism by which physical activity enhances insulin-stimulated vasodilatation. Accordingly, herein we tested the hypothesis that increased shear stress, in the absence of muscle contraction, can acutely render the vascular endothelium more insulin-responsive. To test this hypothesis, complementary experiments were conducted using (1) cultured endothelial cells, (2) isolated and pressurized skeletal muscle arterioles from swine, and (3) humans. In cultured endothelial cells, 1 h of increased shear stress from 3 to 20 dynes cm-2 caused a significant shift in insulin signalling characterized by greater activation of eNOS relative to MAPK. Similarly, isolated arterioles exposed to 1 h of intraluminal shear stress (20 dynes cm-2 ) subsequently exhibited greater insulin-induced vasodilatation compared to arterioles kept under no-flow conditions. Finally, we found in humans that increased leg blood flow induced by unilateral limb heating for 1 h subsequently augmented insulin-stimulated popliteal artery blood flow and muscle perfusion. In aggregate, these findings across models (cells, isolated arterioles and humans) support the hypothesis that elevated shear stress causes the vascular endothelium to become more insulin-responsive and thus are consistent with the notion that shear stress may be a principal mechanism by which physical activity enhances insulin-stimulated vasodilatation.


Asunto(s)
Arteriolas/fisiología , Células Endoteliales/fisiología , Endotelio Vascular/fisiología , Insulina/fisiología , Músculo Esquelético/fisiología , Estrés Mecánico , Adulto , Animales , Células Cultivadas , Femenino , Calor , Humanos , Pierna/irrigación sanguínea , Masculino , Arteria Poplítea/fisiología , Flujo Sanguíneo Regional , Porcinos , Vasodilatación
8.
Am J Physiol Heart Circ Physiol ; 317(5): H1166-H1172, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31603345

RESUMEN

Insulin modulates vasomotor tone through vasodilator and vasoconstrictor signaling pathways. The purpose of the present work was to determine whether insulin-stimulated vasoconstriction is a pathophysiological phenomenon that can result from a combination of persistent insulin signaling, suppressed phosphatidylinositol-3 kinase (PI3K) activation, and an ensuing relative increase in MAPK/endothelin-1 (ET-1) activity. First, we examined previously published work from our group where we assessed changes in lower-limb blood flow in response to an oral glucose tolerance test (endogenous insulin stimulation) in lean and obese subjects. The new analyses showed that the peak rise in vascular resistance during the postprandial state was greater in obese compared with lean subjects. We next extended on these findings by demonstrating that insulin-induced vasoconstriction in isolated resistance arteries from obese subjects was attenuated with ET-1 receptor antagonism, thus implicating ET-1 signaling in this constriction response. Last, we examined in isolated resistance arteries from pigs the dual roles of persistent insulin signaling and blunted PI3K activation in modulating vasomotor responses to insulin. We found that prolonged insulin stimulation did not alter vasomotor responses to insulin when insulin-signaling pathways remained unrestricted. However, prolonged insulinization along with pharmacological suppression of PI3K activity resulted in insulin-induced vasoconstriction, rather than vasodilation. Notably, such aberrant vascular response was rescued with either MAPK inhibition or ET-1 receptor antagonism. In summary, we demonstrate that insulin-induced vasoconstriction is a pathophysiological phenomenon that can be recapitulated when sustained insulin signaling is coupled with depressed PI3K activation and the concomitant relative increase in MAPK/ET-1 activity.NEW & NOTEWORTHY This study reveals that insulin-induced vasoconstriction is a pathophysiological phenomenon. We also provide evidence that in the setting of persistent insulin signaling, impaired phosphatidylinositol-3 kinase activation appears to be a requisite feature precipitating MAPK/endothelin 1-dependent insulin-induced vasoconstriction.


Asunto(s)
Arterias/efectos de los fármacos , Insulina/farmacología , Fosfatidilinositol 3-Quinasa/metabolismo , Vasoconstricción/efectos de los fármacos , Animales , Arterias/enzimología , Arterias/fisiopatología , Endotelina-1/metabolismo , Activación Enzimática , Femenino , Humanos , Resistencia a la Insulina , Masculino , Persona de Mediana Edad , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Obesidad/enzimología , Obesidad/fisiopatología , Transducción de Señal , Sus scrofa
9.
Am J Physiol Regul Integr Comp Physiol ; 314(2): R252-R264, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29141949

RESUMEN

Impaired microvascular insulin signaling may develop before overt indices of microvascular endothelial dysfunction and represent an early pathological feature of adolescent obesity. Using a translational porcine model of juvenile obesity, we tested the hypotheses that in the early stages of obesity development, impaired insulin signaling manifests in skeletal muscle (triceps), brain (prefrontal cortex), and corresponding vasculatures, and that depressed insulin-induced vasodilation is reversible with acute inhibition of protein kinase Cß (PKCß). Juvenile Ossabaw miniature swine (3.5 mo of age) were divided into two groups: lean control ( n = 6) and obese ( n = 6). Obesity was induced by feeding the animals a high-fat/high-fructose corn syrup/high-cholesterol diet for 10 wk. Juvenile obesity was characterized by excess body mass, hyperglycemia, physical inactivity (accelerometer), and marked lipid accumulation in the skeletal muscle, with no evidence of overt atherosclerotic lesions in athero-prone regions, such as the abdominal aorta. Endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) vasomotor responses in the brachial and carotid arteries (wire myography), as well as in the skeletal muscle resistance and 2A pial arterioles (pressure myography) were unaltered, but insulin-induced microvascular vasodilation was impaired in the obese group. Blunted insulin-stimulated vasodilation, which was reversed with acute PKCß inhibition (LY333-531), occurred alongside decreased tissue perfusion, as well as reduced insulin-stimulated Akt signaling in the prefrontal cortex, but not the triceps. In the early stages of juvenile obesity development, the microvasculature and prefrontal cortex exhibit impaired insulin signaling. Such adaptations may underscore vascular and neurological derangements associated with juvenile obesity.


Asunto(s)
Resistencia a la Insulina , Insulina/sangre , Microvasos/metabolismo , Músculo Esquelético/irrigación sanguínea , Obesidad Infantil/metabolismo , Corteza Prefrontal/irrigación sanguínea , Vasodilatación , Factores de Edad , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Masculino , Microvasos/efectos de los fármacos , Microvasos/fisiopatología , Obesidad Infantil/fisiopatología , Fosforilación , Proteína Quinasa C beta/antagonistas & inhibidores , Proteína Quinasa C beta/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Porcinos , Porcinos Enanos , Factores de Tiempo , Vasodilatación/efectos de los fármacos
11.
Am J Physiol Heart Circ Physiol ; 313(1): H103-H113, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28455288

RESUMEN

Heart failure arises, in part, from a constellation of changes in cardiac myocytes including remodeling, energetics, Ca2+ handling, and myofibrillar function. However, little is known about the changes in myofibrillar contractile properties during the progression from hypertension to decompensated heart failure. The aim of the present study was to provide a comprehensive assessment of myofibrillar functional properties from health to heart disease. A rodent model of uncontrolled hypertension was used to test the hypothesis that myocytes in compensated hearts exhibit increased force, higher rates of force development, faster loaded shortening, and greater power output; however, with progression to overt heart failure, we predicted marked depression in these contractile properties. We assessed contractile properties in skinned cardiac myocyte preparations from left ventricles of Wistar-Kyoto control rats and spontaneous hypertensive heart failure (SHHF) rats at ~3, ~12, and >20 mo of age to evaluate the time course of myofilament properties associated with normal aging processes compared with myofilaments from rats with a predisposition to heart failure. In control rats, the myofilament contractile properties were virtually unchanged throughout the aging process. Conversely, in SHHF rats, the rate of force development, loaded shortening velocity, and power all increased at ~12 mo and then significantly fell at the >20-mo time point, which coincided with a decrease in left ventricular fractional shortening. Furthermore, these changes occurred independent of changes in ß-myosin heavy chain but were associated with depressed phosphorylation of myofibrillar proteins, and the fall in loaded shortening and peak power output corresponded with the onset of clinical signs of heart failure.NEW & NOTEWORTHY This novel study systematically examined the power-generating capacity of cardiac myofilaments during the progression from hypertension to heart disease. Previously undiscovered changes in myofibrillar power output were found and were associated with alterations in myofilament proteins, providing potential new targets to exploit for improved ventricular pump function in heart failure.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Hipertensión/fisiopatología , Fuerza Muscular , Contracción Miocárdica , Miocitos Cardíacos , Miofibrillas , Animales , Células Cultivadas , Progresión de la Enfermedad , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Hipertensión/complicaciones , Hipertensión/patología , Masculino , Ratas , Ratas Endogámicas WKY , Estrés Mecánico
12.
Arch Biochem Biophys ; 601: 22-31, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-26854722

RESUMEN

Increased cardiac myocyte contractility by the ß-adrenergic system is an important mechanism to elevate cardiac output to meet hemodynamic demands and this process is depressed in failing hearts. While increased contractility involves augmented myoplasmic calcium transients, the myofilaments also adapt to boost the transduction of the calcium signal. Accordingly, ventricular contractility was found to be tightly correlated with PKA-mediated phosphorylation of two myofibrillar proteins, cardiac myosin binding protein-C (cMyBP-C) and cardiac troponin I (cTnI), implicating these two proteins as important transducers of hemodynamics to the cardiac sarcomere. Consistent with this, we have previously found that phosphorylation of myofilament proteins by PKA (a downstream signaling molecule of the beta-adrenergic system) increased force, slowed force development rates, sped loaded shortening, and increased power output in rat skinned cardiac myocyte preparations. Here, we sought to define molecule-specific mechanisms by which PKA-mediated phosphorylation regulates these contractile properties. Regarding cTnI, the incorporation of thin filaments with unphosphorylated cTnI decreased isometric force production and these changes were reversed by PKA-mediated phosphorylation in skinned cardiac myocytes. Further, incorporation of unphosphorylated cTnI sped rates of force development, which suggests less cooperative thin filament activation and reduced recruitment of non-cycling cross-bridges into the pool of cycling cross-bridges, a process that would tend to depress both myocyte force and power. Regarding MyBP-C, PKA treatment of slow-twitch skeletal muscle fibers caused phosphorylation of MyBP-C (but not slow skeletal TnI (ssTnI)) and yielded faster loaded shortening velocity and ∼30% increase in power output. These results add novel insight into the molecular specificity by which the ß-adrenergic system regulates myofibrillar contractility and how attenuation of PKA-induced phosphorylation of cMyBP-C and cTnI may contribute to ventricular pump failure.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Corazón/fisiología , Miocardio/metabolismo , Miofibrillas/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Hemodinámica , Contracción Isométrica , Masculino , Músculo Esquelético/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo , Sarcómeros/metabolismo , Transducción de Señal , Estrés Mecánico
13.
Radiology ; 277(1): 88-94, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25853636

RESUMEN

PURPOSE: To investigate the use of cine multidetector computed tomography (CT) to detect changes in myocardial function in a swine cardiomyopathy model. MATERIALS AND METHODS: All animal protocols were in accordance with the Principles for the Utilization and Care of Vertebrate Animals Used in Testing Research and Training and approved by the University of Missouri Animal Care and Use Committee. Strain analysis of cine multidetector CT images of the left ventricle was optimized and analyzed with feature-tracking software. The standard of reference for strain was harmonic phase analysis of tagged cardiac magnetic resonance (MR) images at 3.0 T. An animal model of cardiomyopathy was imaged with both cardiac MR and 320-section multidetector CT at a temporal resolution of less than 50 msec. Three groups were evaluated: control group (n = 5), aortic-banded myocardial hypertrophy group (n = 5), and aortic-banded and cyclosporine A- treated cardiomyopathy group (n = 5). Histologic samples of the myocardium were obtained for comparison with strain results. Dunnett test was used for comparisons of the concentric remodeling group and eccentric remodeling group against the control group. RESULTS: Collagen volume fraction ranged from 10.9% to 14.2%; lower collagen fraction values were seen in the control group than in the cardiomyopathy groups (P < .05). Ejection fraction and conventional metrics showed no significant differences between control and cardiomyopathy groups. Radial strain for both cardiac MR and multidetector CT was abnormal in both concentric (cardiac MR 25.1% ± 4.2; multidetector CT 28.4% ± 2.8) and eccentric (cardiac MR 23.2% ± 2.0; multidetector CT 24.4% ± 2.1) remodeling groups relative to control group (cardiac MR 18.9% ± 1.9, multidetector CT 22.0% ± 1.7, P < .05, all comparisons). Strain values for multidetector CT versus cardiac MR showed better agreement in the radial direction than in the circumferential direction (r = 0.55, P = .03 vs r = 0.40, P = .13, respectively). CONCLUSION: Multidetector CT strain analysis has potential to identify regional wall-motion abnormalities in cardiomyopathy that is not otherwise detected using conventional metrics of myocardial function.


Asunto(s)
Cardiomiopatías/diagnóstico , Cardiomiopatías/fisiopatología , Imagen por Resonancia Magnética , Tomografía Computarizada Multidetector , Miocardio/patología , Animales , Fenómenos Biomecánicos , Técnicas de Imagen Cardíaca , Modelos Animales de Enfermedad , Fibrosis , Masculino , Porcinos , Porcinos Enanos
14.
J Appl Physiol (1985) ; 134(2): 482-489, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656980

RESUMEN

SARS-COV-2, or COVID-19, is a respiratory virus that enters tissues via the angiotensin-converting enzyme 2 (ACE2) receptor and is primed and activated by transmembrane protease, serine 2 (TMPRSS2). An interesting dichotomy exists regarding the preventative/therapeutic effects of exercise on COVID-19 infection and severity. Although exercise training has been shown to increase ACE2 receptor levels (increasing susceptibility to COVID-19 infection), it also lowers cardiovascular risk factors, systemic inflammation, and preserves normal renin-angiotensin system axis equilibrium, which is considered to outweigh any enhanced risk of infection by decreasing disease severity. The goal of this study was to determine the effects of chronic exercise training, sex, and Western diet on ACE2 and TMPRSS2 mRNA levels in preclinical swine models of heart failure. We hypothesized chronic exercise training and male sex would increase ACE2 and TMPRSS2 mRNA levels. A retrospective analysis was conducted in previously completed studies including: 1) sedentary and exercise-trained aortic banded male, intact Yucatan mini-swine (n = 6 or 7/group); 2) ovariectomized and/or aortic banded female, intact Yucatan mini-swine (n = 5-8/group); and 3) lean control or Western diet-fed aortic banded female, intact Ossabaw swine (n = 4 or 5/group). Left ventricle, right ventricle, and coronary vascular tissue were evaluated using qRT-PCR. A multivariable regression analysis was used to determine differences between exercise training, sex, and Western diet. Chronic exercise training did not alter ACE2 or TMPRSS2 level regardless of intensity. ACE2 mRNA was altered in a tissue-specific manner due to sex and Western diet. TMPRSS2 mRNA was altered in a tissue-dependent manner due to sex, Western diet, and pig species. These results highlight differences in ACE2 and TMPRSS2 mRNA regulation in an experimental setting of preclinical heart failure that may provide insight into the risk of cardiovascular complications of SARS-COV-2 infection.NEW & NOTEWORTHY This retrospective analysis evaluated the impact of exercise, sex, and diet on ACE2 and TMPRSS2 mRNA levels in preclinical swine heart failure models. Unlike normal exercise intensities, exercise training of an intensity tolerable to a patient with heart failure had no influence on ACE2 or TMPRSS2 mRNA. In a tissue-specific manner, ACE2 mRNA levels were altered due to sex and Western diet, whereas TMPRSS2 mRNA levels were sensitive to sex, Western diet, and pig species.


Asunto(s)
COVID-19 , Insuficiencia Cardíaca , Animales , Femenino , Masculino , Enzima Convertidora de Angiotensina 2 , Dieta , Estudios Retrospectivos , ARN Mensajero/genética , SARS-CoV-2 , Porcinos , Serina Endopeptidasas
15.
Front Cardiovasc Med ; 10: 1215958, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868782

RESUMEN

In this study, anatomical and functional differences between men and women in their cardiovascular systems and how these differences manifest in blood circulation are theoretically and experimentally investigated. A validated mathematical model of the cardiovascular system is used as a virtual laboratory to simulate and compare multiple scenarios where parameters associated with sex differences are varied. Cardiovascular model parameters related with women's faster heart rate, stronger ventricular contractility, and smaller blood vessels are used as inputs to quantify the impact (i) on the distribution of blood volume through the cardiovascular system, (ii) on the cardiovascular indexes describing the coupling between ventricles and arteries, and (iii) on the ballistocardiogram (BCG) signal. The model-predicted outputs are found to be consistent with published clinical data. Model simulations suggest that the balance between the contractile function of the left ventricle and the load opposed by the arterial circulation attains similar levels in females and males, but is achieved through different combinations of factors. Additionally, we examine the potential of using the BCG waveform, which is directly related to cardiovascular volumes, as a noninvasive method for monitoring cardiovascular function. Our findings provide valuable insights into the underlying mechanisms of cardiovascular sex differences and may help facilitate the development of effective noninvasive cardiovascular monitoring methods for early diagnosis and prevention of cardiovascular disease in both women and men.

16.
Front Mol Neurosci ; 16: 1320879, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38163062

RESUMEN

Diet-induced obesity is implicated in the development of a variety of neurodegenerative disorders. Concurrently, the loss of mitochondrial Complex I protein or function is emerging as a key phenotype across an array of neurodegenerative disorders. Therefore, the objective of this study was to determine if Western diet (WD) feeding in swine [carbohydrate = 40.8% kCal (17.8% of total calories from high fructose corn syrup), protein = 16.2% kcal, fat = 42.9% kCal, and 2% cholesterol] would result in Complex I syndrome pathology. To characterize the effects of WD-induced obesity on brain mitochondria in swine, high resolution respirometry measurements from isolated brain mitochondria, oxidative phosphorylation Complex expression, and indices of oxidative stress and mitochondrial biogenesis were assessed in female Ossabaw swine fed a WD for 6-months. In line with Complex I syndrome, WD feeding severely reduced State 3 Complex I, State 3 Complex I and II, and uncoupled mitochondrial respiration in the hippocampus and prefrontal cortex (PFC). State 3 Complex I mitochondrial respiration in the PFC inversely correlated with serum total cholesterol. WD feeding also significantly reduced protein expression of oxidative phosphorylation Complexes I-V in the PFC. WD feeding significantly increased markers of antioxidant defense and mitochondrial biogenesis in the hippocampi and PFC. These data suggest WD-induced obesity may contribute to Complex I syndrome pathology by increasing oxidative stress, decreasing oxidative phosphorylation Complex protein expression, and reducing brain mitochondrial respiration. Furthermore, these findings provide mechanistic insight into the clinical link between obesity and mitochondrial Complex I related neurodegenerative disorders.

17.
Front Med Technol ; 4: 788264, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252962

RESUMEN

Left ventricular (LV) catheterization provides LV pressure-volume (P-V) loops and it represents the gold standard for cardiac function monitoring. This technique, however, is invasive and this limits its applicability in clinical and in-home settings. Ballistocardiography (BCG) is a good candidate for non-invasive cardiac monitoring, as it is based on capturing non-invasively the body motion that results from the blood flowing through the cardiovascular system. This work aims at building a mechanistic connection between changes in the BCG signal, changes in the P-V loops and changes in cardiac function. A mechanism-driven model based on cardiovascular physiology has been used as a virtual laboratory to predict how changes in cardiac function will manifest in the BCG waveform. Specifically, model simulations indicate that a decline in LV contractility results in an increase of the relative timing between the ECG and BCG signal and a decrease in BCG amplitude. The predicted changes have subsequently been observed in measurements on three swine serving as pre-clinical models for pre- and post-myocardial infarction conditions. The reproducibility of BCG measurements has been assessed on repeated, consecutive sessions of data acquisitions on three additional swine. Overall, this study provides experimental evidence supporting the utilization of mechanism-driven mathematical modeling as a guide to interpret changes in the BCG signal on the basis of cardiovascular physiology, thereby advancing the BCG technique as an effective method for non-invasive monitoring of cardiac function.

18.
Am J Physiol Heart Circ Physiol ; 301(4): H1687-94, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21841018

RESUMEN

Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ET(A)) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K(+) currents (I(K(+))) in coronary smooth muscle cells. Raising internal Ca(2+) from 200 to 500 nM increased Ca(2+)-sensitive K(+) current in HF-TR and control, but not HF animals. In conclusion, an ET(A)-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca(2+)-sensitive I(K(+)) was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca(2+)-sensitive I(K(+)), illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy.


Asunto(s)
Enfermedad Coronaria/fisiopatología , Hipertrofia Ventricular Izquierda/fisiopatología , Condicionamiento Físico Animal/fisiología , Canales de Potasio Calcio-Activados/fisiología , Animales , Presión Sanguínea/fisiología , Capilares/fisiología , Cardiotónicos/farmacología , Circulación Coronaria/fisiología , Enfermedad Coronaria/patología , Vasos Coronarios/fisiología , Dobutamina/farmacología , Antagonistas de los Receptores de la Endotelina A , Endotelina-1/metabolismo , Frecuencia Cardíaca/fisiología , Hipertrofia Ventricular Izquierda/patología , Técnicas In Vitro , Masculino , Músculo Liso Vascular/fisiología , Contracción Miocárdica/fisiología , Péptidos Cíclicos/farmacología , Receptor de Endotelina A/fisiología , Porcinos , Porcinos Enanos
19.
JCI Insight ; 6(10)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34027891

RESUMEN

Individuals with heart failure (HF) frequently present with comorbidities, including obesity, insulin resistance, hypertension, and dyslipidemia. Many patients with HF experience cardiogenic dementia, yet the pathophysiology of this disease remains poorly understood. Using a swine model of cardiometabolic HF (Western diet+aortic banding; WD-AB), we tested the hypothesis that WD-AB would promote a multidementia phenotype involving cerebrovascular dysfunction alongside evidence of Alzheimer's disease (AD) pathology. The results provide evidence of cerebrovascular insufficiency coupled with neuroinflammation and amyloidosis in swine with experimental cardiometabolic HF. Although cardiac ejection fraction was normal, indices of arterial compliance and cerebral blood flow were reduced, and cerebrovascular regulation was impaired in the WD-AB group. Cerebrovascular dysfunction occurred concomitantly with increased MAPK signaling and amyloidogenic processing (i.e., increased APP, BACE1, CTF, and Aß40 in the prefrontal cortex and hippocampus) in the WD-AB group. Transcriptomic profiles of the stellate ganglia revealed the WD-AB group displayed an enrichment of gene networks associated with MAPK/ERK signaling, AD, frontotemporal dementia, and a number of behavioral phenotypes implicated in cognitive impairment. These provide potentially novel evidence from a swine model that cerebrovascular and neuronal pathologies likely both contribute to the dementia profile in a setting of cardiometabolic HF.


Asunto(s)
Amiloide/metabolismo , Trastornos Cerebrovasculares , Insuficiencia Cardíaca , Enfermedades Metabólicas , Animales , Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/fisiopatología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Femenino , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/fisiopatología , Transducción de Señal , Porcinos
20.
Am J Physiol Heart Circ Physiol ; 299(5): H1348-56, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20817828

RESUMEN

Cardiac hypertrophy in response to hypertension or myocardial infarction is a pathological indicator associated with heart failure (HF). A central component of the remodeling process is the loss of cardiomyocytes via cell death pathways regulated by the mitochondrion. Recent evidence has indicated that exercise training can attenuate or reverse pathological remodeling, creating a physiological phenotype. The purpose of this study was to examine left ventricular (LV) function, remodeling, and cardiomyocyte mitochondrial function in aortic-banded (AB) sedentary (HFSED; n = 6), AB exercise-trained (HFTR, n = 5), and control sedentary (n = 5) male Yucatan miniature swine. LV hypertrophy was present in both AB groups before the start of training, as indicated by increases in LV end-diastolic volume, LV end-systolic volume (LVESV), and LV end-systolic dimension (LVESD). Exercise training (15 wk) prevented further increases in LVESV and LVESD (P < 0.05). The heart weight-to-body weight ratio, LV + septum-to-body weight ratio, LV + septum-to-right ventricle ratio, and cardiomyocyte cross-sectional area were increased in both AB groups postmortem regardless of training status. Preservation of LV function after exercise training, as indicated by the maintenance of fractional shortening, ejection fraction, and mean wall shortening and increased stroke volume, was associated with an attenuation of the increased LV fibrosis (23%) and collagen (36%) observed in HFSED animals. LV mitochondrial dysfunction, as measured by Ca(2+)-induced mitochondrial permeability transition, was increased in HFSED (P < 0.05) but not HFTR animals. In conclusion, low-intensity interval exercise training preserved LV function as exemplified by an attenuation of fibrosis, maintenance of a positive inotropic state, and inhibition of mitochondrial dysfunction, providing further evidence of the therapeutic potential of exercise in a clinical setting.


Asunto(s)
Insuficiencia Cardíaca/terapia , Hipertrofia Ventricular Izquierda/fisiopatología , Mitocondrias Cardíacas/fisiología , Condicionamiento Físico Animal/fisiología , Remodelación Ventricular/fisiología , Animales , Aorta Torácica , Muerte Celular/fisiología , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Hipertrofia Ventricular Izquierda/patología , Ligadura , Masculino , Miocitos Cardíacos/patología , Porcinos , Porcinos Enanos , Función Ventricular Izquierda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA