Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
ACS Biomater Sci Eng ; 7(9): 4209-4220, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34510904

RESUMEN

Synthetic nerve guidance conduits (NGCs) offer an alternative to harvested nerve grafts for treating peripheral nerve injury (PNI). NGCs have been made from both naturally derived and synthesized materials. While naturally derived materials typically have an increased capacity for bioactivity, synthesized materials have better material control, including tunability and reproducibility. Protein engineering is an alternative strategy that can bridge the benefits of these two classes of materials by designing cell-responsive materials that are also systematically tunable and consistent. Here, we tested a recombinantly derived elastin-like protein (ELP) hydrogel as an intraluminal filler in a rat sciatic nerve injury model. We demonstrated that ELPs enhance the probability of forming a tissue bridge between the proximal and distal nerve stumps compared to an empty silicone conduit across the length of a 10 mm nerve gap. These tissue bridges have evidence of myelinated axons, and electrophysiology demonstrated that regenerated axons innervated distal muscle groups. Animals implanted with an ELP-filled conduit had statistically higher functional control at 6 weeks than those that had received an empty silicone conduit, as evaluated by the sciatic functional index. Taken together, our data support the conclusion that ELPs support peripheral nerve regeneration in acute complete transection injuries when used as an intraluminal filler. These results support the further study of protein engineered recombinant ELP hydrogels as a reproducible, off-the-shelf alternative for regeneration of peripheral nerves.


Asunto(s)
Elastina , Regeneración Tisular Dirigida , Animales , Regeneración Nerviosa , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Nervio Ciático/cirugía , Andamios del Tejido
2.
J Biomed Opt ; 10(3): 031114, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16229639

RESUMEN

We report the first successful study of the use of Raman spectroscopy for quantitative, noninvasive ("transcutaneous") measurement of blood analytes, using glucose as an example. As an initial evaluation of the ability of Raman spectroscopy to measure glucose transcutaneously, we studied 17 healthy human subjects whose blood glucose levels were elevated over a period of 2-3 h using a standard glucose tolerance test protocol. During the test, 461 Raman spectra were collected transcutaneously along with glucose reference values provided by standard capillary blood analysis. A partial least squares calibration was created from the data from each subject and validated using leave-one-out cross validation. The mean absolute errors for each subject were 7.8%+/-1.8% (mean+/-std) with R2 values of 0.83+/-0.10. We provide spectral evidence that the glucose spectrum is an important part of the calibrations by analysis of the calibration regression vectors.


Asunto(s)
Automonitorización de la Glucosa Sanguínea/instrumentación , Automonitorización de la Glucosa Sanguínea/métodos , Glucemia/análisis , Diagnóstico por Computador/métodos , Espectrometría Raman/instrumentación , Espectrometría Raman/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Estudios de Factibilidad , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
Appl Opt ; 42(7): 1384-94, 2003 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-12638895

RESUMEN

We studied the influence of shape and secondary, or intercellular, organization on the absorption and scattering properties of red blood cells to determine whether these properties are of any practical significance for optical evaluation of whole blood and its constituents. A series of measurements of transmittance and reflectance of light from bovine blood in a flow cuvette was conducted with a 650-900-nm integrating sphere at shear rates of 0-1600 s(-1), from which the influence of cell orientation, elongation, and aggregate formation on the absorption (mu(a)) and the reduced scattering (mu(s)') coefficients could be quantified. Aggregation was accompanied by a decrease of 4% in mu(s)' compared with the value in randomly oriented single cells. Increasing the degree of cell alignment and elongation as a result of increasing shear rate reduced mu(s)' by 6% and mu(a) by 3%, evaluated at a shear rate of 1600 s(-1). Comparison with T-matrix computations for oblate- and prolate-shaped cells with corresponding elongation and orientation indicates that the optical properties of whole blood are determined by those of its individual cells, though influenced by a collective scattering factor that depends on the cell-to-cell organization. We demonstrate that cell morphological changes must be taken into consideration when one is conducting whole blood spectroscopy.


Asunto(s)
Circulación Sanguínea , Fenómenos Fisiológicos Sanguíneos , Eritrocitos/fisiología , Óptica y Fotónica , Animales , Bovinos , Agregación Celular , Tamaño de la Célula
4.
J Opt Soc Am A Opt Image Sci Vis ; 20(4): 714-27, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12683499

RESUMEN

Two efficient Monte Carlo models are described, facilitating predictions of complete time-resolved fluorescence spectra from a light-scattering and light-absorbing medium. These are compared with a third, conventional fluorescence Monte Carlo model in terms of accuracy, signal-to-noise statistics, and simulation time. The improved computation efficiency is achieved by means of a convolution technique, justified by the symmetry of the problem. Furthermore, the reciprocity principle for photon paths, employed in one of the accelerated models, is shown to simplify the computations of the distribution of the emitted fluorescence drastically. A so-called white Monte Carlo approach is finally suggested for efficient simulations of one excitation wavelength combined with a wide range of emission wavelengths. The fluorescence is simulated in a purely scattering medium, and the absorption properties are instead taken into account analytically afterward. This approach is applicable to the conventional model as well as to the two accelerated models. Essentially the same absolute values for the fluorescence integrated over the emitting surface and time are obtained for the three models within the accuracy of the simulations. The time-resolved and spatially resolved fluorescence exhibits a slight overestimation at short delay times close to the source corresponding to approximately two grid elements for the accelerated models, as a result of the discretization and the convolution. The improved efficiency is most prominent for the reverse-emission accelerated model, for which the simulation time can be reduced by up to two orders of magnitude.


Asunto(s)
Simulación por Computador , Modelos Teóricos , Método de Montecarlo , Óptica y Fotónica , Espectrometría de Fluorescencia
5.
Opt Lett ; 27(22): 2004-6, 2002 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18033426

RESUMEN

Concentrations of multiple analytes were simultaneously measured in whole blood with clinical accuracy, without sample processing, using near-infrared Raman spectroscopy. Spectra were acquired with an instrument employing nonimaging optics, designed using Monte Carlo simulations of the influence of light-scattering-absorbing blood cells on the excitation and emission of Raman light in turbid medium. Raman spectra were collected from whole blood drawn from 31 individuals. Quantitative predictions of glucose, urea, total protein, albumin, triglycerides, hematocrit, and hemoglobin were made by means of partial least-squares (PLS) analysis with clinically relevant precision (r(2) values >0.93). The similarity of the features of the PLS calibration spectra to those of the respective analyte spectra illustrates that the predictions are based on molecular information carried by the Raman light. This demonstrates the feasibility of using Raman spectroscopy for quantitative measurements of biomolecular contents in highly light-scattering and absorbing media.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA