Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell ; 187(3): 563-584, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306982

RESUMEN

Biology spans a continuum of length and time scales. Individual experimental methods only glimpse discrete pieces of this spectrum but can be combined to construct a more holistic view. In this Review, we detail the latest advancements in volume electron microscopy (vEM) and cryo-electron tomography (cryo-ET), which together can visualize biological complexity across scales from the organization of cells in large tissues to the molecular details inside native cellular environments. In addition, we discuss emerging methodologies for integrating three-dimensional electron microscopy (3DEM) imaging with multimodal data, including fluorescence microscopy, mass spectrometry, single-particle analysis, and AI-based structure prediction. This multifaceted approach fills gaps in the biological continuum, providing functional context, spatial organization, molecular identity, and native interactions. We conclude with a perspective on incorporating diverse data into computational simulations that further bridge and extend length scales while integrating the dimension of time.


Asunto(s)
Biología , Microscopía Electrónica , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Microscopía Fluorescente , Tiempo , Simulación por Computador
2.
Artículo en Inglés | MEDLINE | ID: mdl-38950450

RESUMEN

Oxygenic photosynthesis evolved billions of years ago, becoming Earth's main source of biologically available carbon and atmospheric oxygen. Since then, phototrophic organisms have diversified from prokaryotic cyanobacteria into several distinct clades of eukaryotic algae and plants through endosymbiosis events. This diversity can be seen in the thylakoid membranes, complex networks of lipids, proteins, and pigments that perform the light-dependent reactions of photosynthesis. In this review, we highlight the structural diversity of thylakoids, following the evolutionary history of phototrophic species. We begin with a molecular inventory of different thylakoid components and then illustrate how these building blocks are integrated to form membrane networks with diverse architectures. We conclude with an outlook on understanding how thylakoids remodel their architecture and molecular organization during dynamic processes such as biogenesis, repair, and environmental adaptation.

3.
Cell ; 184(14): 3643-3659.e23, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34166613

RESUMEN

Vesicle-inducing protein in plastids 1 (VIPP1) is essential for the biogenesis and maintenance of thylakoid membranes, which transform light into life. However, it is unknown how VIPP1 performs its vital membrane-remodeling functions. Here, we use cryo-electron microscopy to determine structures of cyanobacterial VIPP1 rings, revealing how VIPP1 monomers flex and interweave to form basket-like assemblies of different symmetries. Three VIPP1 monomers together coordinate a non-canonical nucleotide binding pocket on one end of the ring. Inside the ring's lumen, amphipathic helices from each monomer align to form large hydrophobic columns, enabling VIPP1 to bind and curve membranes. In vivo mutations in these hydrophobic surfaces cause extreme thylakoid swelling under high light, indicating an essential role of VIPP1 lipid binding in resisting stress-induced damage. Using cryo-correlative light and electron microscopy (cryo-CLEM), we observe oligomeric VIPP1 coats encapsulating membrane tubules within the Chlamydomonas chloroplast. Our work provides a structural foundation for understanding how VIPP1 directs thylakoid biogenesis and maintenance.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Chlamydomonas/metabolismo , Multimerización de Proteína , Synechocystis/metabolismo , Tilacoides/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Membrana Celular/metabolismo , Chlamydomonas/ultraestructura , Microscopía por Crioelectrón , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Luz , Lípidos/química , Modelos Moleculares , Nucleótidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estrés Fisiológico/efectos de la radiación , Synechocystis/ultraestructura , Tilacoides/ultraestructura
4.
Cell ; 171(1): 148-162.e19, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28938114

RESUMEN

Approximately 30%-40% of global CO2 fixation occurs inside a non-membrane-bound organelle called the pyrenoid, which is found within the chloroplasts of most eukaryotic algae. The pyrenoid matrix is densely packed with the CO2-fixing enzyme Rubisco and is thought to be a crystalline or amorphous solid. Here, we show that the pyrenoid matrix of the unicellular alga Chlamydomonas reinhardtii is not crystalline but behaves as a liquid that dissolves and condenses during cell division. Furthermore, we show that new pyrenoids are formed both by fission and de novo assembly. Our modeling predicts the existence of a "magic number" effect associated with special, highly stable heterocomplexes that influences phase separation in liquid-like organelles. This view of the pyrenoid matrix as a phase-separated compartment provides a paradigm for understanding its structure, biogenesis, and regulation. More broadly, our findings expand our understanding of the principles that govern the architecture and inheritance of liquid-like organelles.


Asunto(s)
Chlamydomonas reinhardtii/citología , Cloroplastos/ultraestructura , Proteínas Algáceas/metabolismo , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/química , Cloroplastos/metabolismo , Microscopía por Crioelectrón , Biogénesis de Organelos , Ribulosa-Bifosfato Carboxilasa/metabolismo
5.
Nature ; 607(7920): 823-830, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35859174

RESUMEN

Filamentous enzymes have been found in all domains of life, but the advantage of filamentation is often elusive1. Some anaerobic, autotrophic bacteria have an unusual filamentous enzyme for CO2 fixation-hydrogen-dependent CO2 reductase (HDCR)2,3-which directly converts H2 and CO2 into formic acid. HDCR reduces CO2 with a higher activity than any other known biological or chemical catalyst4,5, and it has therefore gained considerable interest in two areas of global relevance: hydrogen storage and combating climate change by capturing atmospheric CO2. However, the mechanistic basis of the high catalytic turnover rate of HDCR has remained unknown. Here we use cryo-electron microscopy to reveal the structure of a short HDCR filament from the acetogenic bacterium Thermoanaerobacter kivui. The minimum repeating unit is a hexamer that consists of a formate dehydrogenase (FdhF) and two hydrogenases (HydA2) bound around a central core of hydrogenase Fe-S subunits, one HycB3 and two HycB4. These small bacterial polyferredoxin-like proteins oligomerize through their C-terminal helices to form the backbone of the filament. By combining structure-directed mutagenesis with enzymatic analysis, we show that filamentation and rapid electron transfer through the filament enhance the activity of HDCR. To investigate the structure of HDCR in situ, we imaged T. kivui cells with cryo-electron tomography and found that HDCR filaments bundle into large ring-shaped superstructures attached to the plasma membrane. This supramolecular organization may further enhance the stability and connectivity of HDCR to form a specialized metabolic subcompartment within the cell.


Asunto(s)
Dióxido de Carbono , Membrana Celular , Hidrógeno , Hidrogenasas , Nanocables , Dióxido de Carbono/metabolismo , Membrana Celular/enzimología , Microscopía por Crioelectrón , Estabilidad de Enzimas , Hidrógeno/metabolismo , Hidrogenasas/química , Hidrogenasas/genética , Hidrogenasas/metabolismo , Hidrogenasas/ultraestructura , Mutación , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Thermoanaerobacter/citología , Thermoanaerobacter/enzimología
6.
EMBO J ; 39(22): e106246, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32954513

RESUMEN

Centrioles are evolutionarily conserved barrels of microtubule triplets that form the core of the centrosome and the base of the cilium. While the crucial role of the proximal region in centriole biogenesis has been well documented, its native architecture and evolutionary conservation remain relatively unexplored. Here, using cryo-electron tomography of centrioles from four evolutionarily distant species, we report on the architectural diversity of the centriole's proximal cartwheel-bearing region. Our work reveals that the cartwheel central hub is constructed from a stack of paired rings with cartwheel inner densities inside. In both Paramecium and Chlamydomonas, the repeating structural unit of the cartwheel has a periodicity of 25 nm and consists of three ring pairs, with 6 radial spokes emanating and merging into a single bundle that connects to the microtubule triplet via the D2-rod and the pinhead. Finally, we identified that the cartwheel is indirectly connected to the A-C linker through the triplet base structure extending from the pinhead. Together, our work provides unprecedented evolutionary insights into the architecture of the centriole proximal region, which underlies centriole biogenesis.


Asunto(s)
Centriolos/fisiología , Centriolos/ultraestructura , Tomografía con Microscopio Electrónico/métodos , Centrosoma , Chlamydomonas reinhardtii/fisiología , Cilios , Humanos , Microtúbulos , Modelos Moleculares , Naegleria/fisiología , Paramecium tetraurelia/fisiología
7.
Nat Methods ; 18(11): 1386-1394, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34675434

RESUMEN

Cryogenic electron tomography (cryo-ET) visualizes the 3D spatial distribution of macromolecules at nanometer resolution inside native cells. However, automated identification of macromolecules inside cellular tomograms is challenged by noise and reconstruction artifacts, as well as the presence of many molecular species in the crowded volumes. Here, we present DeepFinder, a computational procedure that uses artificial neural networks to simultaneously localize multiple classes of macromolecules. Once trained, the inference stage of DeepFinder is faster than template matching and performs better than other competitive deep learning methods at identifying macromolecules of various sizes in both synthetic and experimental datasets. On cellular cryo-ET data, DeepFinder localized membrane-bound and cytosolic ribosomes (roughly 3.2 MDa), ribulose 1,5-bisphosphate carboxylase-oxygenase (roughly 560 kDa soluble complex) and photosystem II (roughly 550 kDa membrane complex) with an accuracy comparable to expert-supervised ground truth annotations. DeepFinder is therefore a promising algorithm for the semiautomated analysis of a wide range of molecular targets in cellular tomograms.


Asunto(s)
Algoritmos , Microscopía por Crioelectrón/métodos , Aprendizaje Profundo , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Sustancias Macromoleculares/química , Redes Neurales de la Computación , Chlamydomonas reinhardtii/metabolismo , Complejo de Proteína del Fotosistema II/química , Ribosomas/química , Ribulosa-Bifosfato Carboxilasa/química
8.
Nature ; 561(7724): 561-564, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30224749

RESUMEN

Eukaryotic cells traffic proteins and lipids between different compartments using protein-coated vesicles and tubules. The retromer complex is required to generate cargo-selective tubulovesicular carriers from endosomal membranes1-3. Conserved in eukaryotes, retromer controls the cellular localization and homeostasis of hundreds of transmembrane proteins, and its disruption is associated with major neurodegenerative disorders4-7. How retromer is assembled and how it is recruited to form coated tubules is not known. Here we describe the structure of the retromer complex (Vps26-Vps29-Vps35) assembled on membrane tubules with the bin/amphiphysin/rvs-domain-containing sorting nexin protein Vps5, using cryo-electron tomography and subtomogram averaging. This reveals a membrane-associated Vps5 array, from which arches of retromer extend away from the membrane surface. Vps35 forms the 'legs' of these arches, and Vps29 resides at the apex where it is free to interact with regulatory factors. The bases of the arches connect to each other and to Vps5 through Vps26, and the presence of the same arches on coated tubules within cells confirms their functional importance. Vps5 binds to Vps26 at a position analogous to the previously described cargo- and Snx3-binding site, which suggests the existence of distinct retromer-sorting nexin assemblies. The structure provides insight into the architecture of the coat and its mechanism of assembly, and suggests that retromer promotes tubule formation by directing the distribution of sorting nexin proteins on the membrane surface while providing a scaffold for regulatory-protein interactions.


Asunto(s)
Chaetomium/química , Chaetomium/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/ultraestructura , Chaetomium/metabolismo , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/ultraestructura , Humanos , Modelos Moleculares , Unión Proteica , Transporte de Proteínas , Nexinas de Clasificación/química , Nexinas de Clasificación/metabolismo , Nexinas de Clasificación/ultraestructura , Proteínas de Transporte Vesicular/metabolismo
9.
EMBO J ; 38(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30609992

RESUMEN

Cryo-electron tomography and small-angle X-ray scattering were used to investigate the chromatin folding in metaphase chromosomes. The tomographic 3D reconstructions show that frozen-hydrated chromatin emanated from chromosomes is planar and forms multilayered plates. The layer thickness was measured accounting for the contrast transfer function fringes at the plate edges, yielding a width of ~ 7.5 nm, which is compatible with the dimensions of a monolayer of nucleosomes slightly tilted with respect to the layer surface. Individual nucleosomes are visible decorating distorted plates, but typical plates are very dense and nucleosomes are not identifiable as individual units, indicating that they are tightly packed. Two layers in contact are ~ 13 nm thick, which is thinner than the sum of two independent layers, suggesting that nucleosomes in the layers interdigitate. X-ray scattering of whole chromosomes shows a main scattering peak at ~ 6 nm, which can be correlated with the distance between layers and between interdigitating nucleosomes interacting through their faces. These observations support a model where compact chromosomes are composed of many chromatin layers stacked along the chromosome axis.


Asunto(s)
Cromatina/ultraestructura , Estructuras Cromosómicas/ultraestructura , Cromosomas Humanos/ultraestructura , Metafase , Nucleosomas/ultraestructura , Tomografía con Microscopio Electrónico , Secciones por Congelación , Células HeLa , Humanos
10.
Proc Natl Acad Sci U S A ; 117(2): 1069-1080, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31882451

RESUMEN

To promote the biochemical reactions of life, cells can compartmentalize molecular interaction partners together within separated non-membrane-bound regions. It is unknown whether this strategy is used to facilitate protein degradation at specific locations within the cell. Leveraging in situ cryo-electron tomography to image the native molecular landscape of the unicellular alga Chlamydomonas reinhardtii, we discovered that the cytosolic protein degradation machinery is concentrated within ∼200-nm foci that contact specialized patches of endoplasmic reticulum (ER) membrane away from the ER-Golgi interface. These non-membrane-bound microcompartments exclude ribosomes and consist of a core of densely clustered 26S proteasomes surrounded by a loose cloud of Cdc48. Active proteasomes in the microcompartments directly engage with putative substrate at the ER membrane, a function canonically assigned to Cdc48. Live-cell fluorescence microscopy revealed that the proteasome clusters are dynamic, with frequent assembly and fusion events. We propose that the microcompartments perform ER-associated degradation, colocalizing the degradation machinery at specific ER hot spots to enable efficient protein quality control.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Proteolisis , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/ultraestructura , Microscopía por Crioelectrón , Citosol/metabolismo , Endopeptidasas , Imagen Óptica , Complejo de la Endopetidasa Proteasomal/metabolismo , Ribosomas/metabolismo , Ribosomas/ultraestructura , Proteína que Contiene Valosina/metabolismo
11.
Nat Methods ; 16(8): 757-762, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31363205

RESUMEN

Cryo-focused ion beam milling of frozen-hydrated cells has recently provided unprecedented insights into the inner space of cells. In combination with cryo-electron tomography, this method allows access to native structures deep inside cells, enabling structural studies of macromolecules in situ. However, this approach has been mainly limited to individual cells that can be completely vitrified by plunge-freezing. Here, we describe a preparation method that is based on the targeted extraction of material from high-pressure-frozen bulk specimens with a cryo-gripper tool. This lift-out technique enables cryo-electron tomography to be performed on multicellular organisms and tissue, extending the range of applications for in situ structural biology. We demonstrate the potential of the lift-out technique with a structural study of cytosolic 80S ribosomes in a Caenorhabditis elegans worm. The preparation quality allowed for subtomogram analysis with sufficient resolution to distinguish individual ribosomal translocation states and revealed significant cell-to-cell variation in ribosome structure.


Asunto(s)
Caenorhabditis elegans/ultraestructura , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Sustancias Macromoleculares/ultraestructura , Subunidades Ribosómicas/ultraestructura , Animales
13.
Plant Cell Environ ; 43(5): 1212-1229, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31994740

RESUMEN

VIPP proteins aid thylakoid biogenesis and membrane maintenance in cyanobacteria, algae, and plants. Some members of the Chlorophyceae contain two VIPP paralogs termed VIPP1 and VIPP2, which originate from an early gene duplication event during the evolution of green algae. VIPP2 is barely expressed under nonstress conditions but accumulates in cells exposed to high light intensities or H2 O2 , during recovery from heat stress, and in mutants with defective integration (alb3.1) or translocation (secA) of thylakoid membrane proteins. Recombinant VIPP2 forms rod-like structures in vitro and shows a strong affinity for phosphatidylinositol phosphate. Under stress conditions, >70% of VIPP2 is present in membrane fractions and localizes to chloroplast membranes. A vipp2 knock-out mutant displays no growth phenotypes and no defects in the biogenesis or repair of photosystem II. However, after exposure to high light intensities, the vipp2 mutant accumulates less HSP22E/F and more LHCSR3 protein and transcript. This suggests that VIPP2 modulates a retrograde signal for the expression of nuclear genes HSP22E/F and LHCSR3. Immunoprecipitation of VIPP2 from solubilized cells and membrane-enriched fractions revealed major interactions with VIPP1 and minor interactions with HSP22E/F. Our data support a distinct role of VIPP2 in sensing and coping with chloroplast membrane stress.


Asunto(s)
Chlorophyceae/metabolismo , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/fisiología , Proteínas de Plantas/fisiología , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/fisiología , Chlamydomonas reinhardtii/ultraestructura , Chlorophyceae/genética , Chlorophyceae/fisiología , Chlorophyceae/ultraestructura , Cloroplastos/fisiología , Cloroplastos/ultraestructura , Clonación Molecular , Inmunoprecipitación , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Filogenia , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Tilacoides/metabolismo
14.
Proc Natl Acad Sci U S A ; 114(52): 13726-13731, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29229809

RESUMEN

The partitioning of cellular components between the nucleus and cytoplasm is the defining feature of eukaryotic life. The nuclear pore complex (NPC) selectively gates the transport of macromolecules between these compartments, but it is unknown whether surveillance mechanisms exist to reinforce this function. By leveraging in situ cryo-electron tomography to image the native cellular environment of Chlamydomonas reinhardtii, we observed that nuclear 26S proteasomes crowd around NPCs. Through a combination of subtomogram averaging and nanometer-precision localization, we identified two classes of proteasomes tethered via their Rpn9 subunits to two specific NPC locations: binding sites on the NPC basket that reflect its eightfold symmetry and more abundant binding sites at the inner nuclear membrane that encircle the NPC. These basket-tethered and membrane-tethered proteasomes, which have similar substrate-processing state frequencies as proteasomes elsewhere in the cell, are ideally positioned to regulate transcription and perform quality control of both soluble and membrane proteins transiting the NPC.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Poro Nuclear/metabolismo , Proteínas de Plantas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Chlamydomonas reinhardtii/ultraestructura , Microscopía por Crioelectrón , Poro Nuclear/ultraestructura , Complejo de la Endopetidasa Proteasomal/ultraestructura
15.
Proc Natl Acad Sci U S A ; 112(36): 11264-9, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26311849

RESUMEN

We acquired molecular-resolution structures of the Golgi within its native cellular environment. Vitreous Chlamydomonas cells were thinned by cryo-focused ion beam milling and then visualized by cryo-electron tomography. These tomograms revealed structures within the Golgi cisternae that have not been seen before. Narrow trans-Golgi lumina were spanned by asymmetric membrane-associated protein arrays that had ∼6-nm lateral periodicity. Subtomogram averaging showed that the arrays may determine the narrow central spacing of the trans-Golgi cisternae through zipper-like interactions, thereby forcing cargo to the trans-Golgi periphery. Additionally, we observed dense granular aggregates within cisternae and intracisternal filament bundles associated with trans-Golgi buds. These native in situ structures provide new molecular insights into Golgi architecture and function.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Algáceas/ultraestructura , Chlamydomonas reinhardtii/ultraestructura , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Aparato de Golgi/ultraestructura , Proteínas de la Membrana/ultraestructura , Modelos Anatómicos , Modelos Biológicos , Transporte de Proteínas , Red trans-Golgi/metabolismo , Red trans-Golgi/ultraestructura
16.
J Struct Biol ; 197(2): 73-82, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27444390

RESUMEN

While cryo-electron tomography (cryo-ET) can reveal biological structures in their native state within the cellular environment, it requires the production of high-quality frozen-hydrated sections that are thinner than 300nm. Sample requirements are even more stringent for the visualization of membrane-bound protein complexes within dense cellular regions. Focused ion beam (FIB) sample preparation for transmission electron microscopy (TEM) is a well-established technique in material science, but there are only few examples of biological samples exhibiting sufficient quality for high-resolution in situ investigation by cryo-ET. In this work, we present a comprehensive description of a cryo-sample preparation workflow incorporating additional conductive-coating procedures. These coating steps eliminate the adverse effects of sample charging on imaging with the Volta phase plate, allowing data acquisition with improved contrast. We discuss optimized FIB milling strategies adapted from material science and each critical step required to produce homogeneously thin, non-charging FIB lamellas that make large areas of unperturbed HeLa and Chlamydomonas cells accessible for cryo-ET at molecular resolution.


Asunto(s)
Secciones por Congelación/métodos , Proteínas de la Membrana/ultraestructura , Manejo de Especímenes/métodos , Chlamydomonas/ultraestructura , Tomografía con Microscopio Electrónico/métodos , Células HeLa , Humanos , Microscopía Electrónica de Transmisión/métodos
17.
Bioessays ; 36(5): 463-7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24616010

RESUMEN

Cilia are microtubule-based hair-like structures that project from the surfaces of eukaryotic cells. Cilium formation relies on intraflagellar transport (IFT) to move ciliary proteins such as tubulin from the site of synthesis in the cell body to the site of function in the cilium. A large protein complex (the IFT complex) is believed to mediate interactions between cargoes and the molecular motors that walk along axonemal microtubules between the ciliary base and tip. A recent study using purified IFT complexes has identified a tubulin-binding module in the two core IFT proteins IFT74 and IFT81 that likely serves to bind and transport tubulin within cilia. Here, we calculate the amount of tubulin required to support the observed cilium assembly kinetics and explore the possibility of multiple tubulin binding sites within the IFT complex.


Asunto(s)
Cilios/metabolismo , Proteínas del Citoesqueleto/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Sitios de Unión , Transporte Biológico , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Tubulina (Proteína)/química
18.
Plant Direct ; 8(6): e614, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887666

RESUMEN

Eukaryotic cells are highly compartmentalized, requiring elaborate transport mechanisms to facilitate the movement of proteins between membrane-bound compartments. Most proteins synthesized in the endoplasmic reticulum (ER) are transported to the Golgi apparatus through COPII-mediated vesicular trafficking. Sar1, a small GTPase that facilitates the formation of COPII vesicles, plays a critical role in the early steps of this protein secretory pathway. Sar1 was characterized in yeast, animals and plants, but no Sar1 homolog has been identified and functionally analyzed in algae. Here we identified a putative Sar1 homolog (CrSar1) in the model green alga Chlamydomonas reinhardtii through amino acid sequence similarity. We employed site-directed mutagenesis to generate a dominant-negative mutant of CrSar1 (CrSar1DN). Using protein secretion assays, we demonstrate the inhibitory effect of CrSar1DN on protein secretion. However, different from previously studied organisms, ectopic expression of CrSar1DN did not result in collapse of the ER-Golgi interface in Chlamydomonas. Nonetheless, our data suggest a largely conserved role of CrSar1 in the ER-to-Golgi protein secretory pathway in green algae.

19.
Nat Commun ; 14(1): 709, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759608

RESUMEN

Adipocyte-derived extracellular vesicles (AdEVs) are membranous nanoparticles that convey communication from adipose tissue to other organs. Here, to delineate their role as messengers with glucoregulatory nature, we paired fluorescence AdEV-tracing and SILAC-labeling with (phospho)proteomics, and revealed that AdEVs transfer functional insulinotropic protein cargo into pancreatic ß-cells. Upon transfer, AdEV proteins were subjects for phosphorylation, augmented insulinotropic GPCR/cAMP/PKA signaling by increasing total protein abundances and phosphosite dynamics, and ultimately enhanced 1st-phase glucose-stimulated insulin secretion (GSIS) in murine islets. Notably, insulinotropic effects were restricted to AdEVs isolated from obese and insulin resistant, but not lean mice, which was consistent with differential protein loads and AdEV luminal morphologies. Likewise, in vivo pre-treatment with AdEVs from obese but not lean mice amplified insulin secretion and glucose tolerance in mice. This data suggests that secreted AdEVs can inform pancreatic ß-cells about insulin resistance in adipose tissue in order to amplify GSIS in times of increased insulin demand.


Asunto(s)
Vesículas Extracelulares , Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Animales , Secreción de Insulina , Insulina/metabolismo , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Obesidad/metabolismo , Adipocitos/metabolismo , Vesículas Extracelulares/metabolismo , Islotes Pancreáticos/metabolismo
20.
Comput Methods Programs Biomed ; 224: 106990, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35858496

RESUMEN

BACKGROUND AND OBJECTIVE: Cryo-electron tomography (cryo-ET) is an imaging technique that enables 3D visualization of the native cellular environment at sub-nanometer resolution, providing unpreceded insights into the molecular organization of cells. However, cryo-electron tomograms suffer from low signal-to-noise ratios and anisotropic resolution, which makes subsequent image analysis challenging. In particular, the efficient detection of membrane-embedded proteins is a problem still lacking satisfactory solutions. METHODS: We present MemBrain - a new deep learning-aided pipeline that automatically detects membrane-bound protein complexes in cryo-electron tomograms. After subvolumes are sampled along a segmented membrane, each subvolume is assigned a score using a convolutional neural network (CNN), and protein positions are extracted by a clustering algorithm. Incorporating rotational subvolume normalization and using a tiny receptive field simplify the task of protein detection and thus facilitate the network training. RESULTS: MemBrain requires only a small quantity of training labels and achieves excellent performance with only a single annotated membrane (F1 score: 0.88). A detailed evaluation shows that our fully trained pipeline outperforms existing classical computer vision-based and CNN-based approaches by a large margin (F1 score: 0.92 vs. max. 0.63). Furthermore, in addition to protein center positions, MemBrain can determine protein orientations, which has not been implemented by any existing CNN-based method to date. We also show that a pre-trained MemBrain program generalizes to tomograms acquired using different cryo-ET methods and depicting different types of cells. CONCLUSIONS: MemBrain is a powerful and annotation-efficient tool for the detection of membrane protein complexes in cryo-ET data, with the potential to be used in a wide range of biological studies. It is generalizable to various kinds of tomograms, making it possible to use pretrained models for different tasks. Its efficiency in terms of required annotations also allows rapid training and fine-tuning of models. The corresponding code, pretrained models, and instructions for operating the MemBrain program can be found at: https://github.com/CellArchLab/MemBrain.


Asunto(s)
Aprendizaje Profundo , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Electrones , Procesamiento de Imagen Asistido por Computador/métodos , Proteínas de la Membrana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA