Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 58(52): 18957-18963, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31693786

RESUMEN

Natural products (NPs) from microorganisms have been important sources for discovering new therapeutic and chemical entities. While their corresponding biosynthetic gene clusters (BGCs) can be easily identified by gene-sequence-similarity-based bioinformatics strategies, the actual access to these NPs for structure elucidation and bioactivity testing remains difficult. Deletion of the gene encoding the RNA chaperone, Hfq, results in strains losing the production of most NPs. By exchanging the native promoter of a desired BGC against an inducible promoter in Δhfq mutants, almost exclusive production of the corresponding NP from the targeted BGC in Photorhabdus, Xenorhabdus and Pseudomonas was observed including the production of several new NPs derived from previously uncharacterized non-ribosomal peptide synthetases (NRPS). This easyPACId approach (easy Promoter Activated Compound Identification) facilitates NP identification due to low interference from other NPs. Moreover, it allows direct bioactivity testing of supernatants containing secreted NPs, without laborious purification.


Asunto(s)
Productos Biológicos/química , Vías Biosintéticas/genética , Metabolómica/métodos , Humanos
2.
Curr Top Microbiol Immunol ; 402: 55-79, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28091935

RESUMEN

Although the first natural products (NP) from Photorhabdus and Xenorhabdus bacteria have been known now for almost 30 years, a huge variety of new compounds have been identified in the last 5-10 years, mainly due to the application of modern mass spectrometry. Additionally, application of molecular methods that allow the activation of NP production in several different strains as well as efficient heterologous expression methods have led to the production and validation of many new compounds. In this chapter we discuss the benefit of using Photorhabdus as a model system for microbial chemical ecology. We also examine non-ribosomal peptide synthetases as the most important pathway for NP production. Finally, we discuss the origin and function of all currently known NPs and the development of the molecular and chemical tools used to identify these NPs faster.


Asunto(s)
Productos Biológicos , Photorhabdus , Xenorhabdus , Photorhabdus/química , Xenorhabdus/química
3.
Nat Microbiol ; 4(12): 2498-2510, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31611640

RESUMEN

It is generally believed that exchange of secondary metabolite biosynthetic gene clusters (BGCs) among closely related bacteria is an important driver of BGC evolution and diversification. Applying this idea may help researchers efficiently connect many BGCs to their products and characterize the products' roles in various environments. However, existing genetic tools support only a small fraction of these efforts. Here, we present the development of chassis-independent recombinase-assisted genome engineering (CRAGE), which enables single-step integration of large, complex BGC constructs directly into the chromosomes of diverse bacteria with high accuracy and efficiency. To demonstrate the efficacy of CRAGE, we expressed three known and six previously identified but experimentally elusive non-ribosomal peptide synthetase (NRPS) and NRPS-polyketide synthase (PKS) hybrid BGCs from Photorhabdus luminescens in 25 diverse γ-Proteobacteria species. Successful activation of six BGCs identified 22 products for which diversity and yield were greater when the BGCs were expressed in strains closely related to the native strain than when they were expressed in either native or more distantly related strains. Activation of these BGCs demonstrates the feasibility of exploiting their underlying catalytic activity and plasticity, and provides evidence that systematic approaches based on CRAGE will be useful for discovering and identifying previously uncharacterized metabolites.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Vías Biosintéticas/genética , Ingeniería Genética/métodos , Familia de Multigenes , Recombinasas/metabolismo , Metabolismo Secundario/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Genoma Bacteriano , Péptido Sintasas , Photorhabdus/genética , Sintasas Poliquetidas/genética
4.
Front Microbiol ; 8: 209, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28261170

RESUMEN

Photorhabdus luminescens TTO1 and Xenorhabdus nematophila HGB081 are insect pathogenic bacteria and producers of various structurally diverse bioactive natural products. In these entomopathogenic bacteria we investigated the role of the global regulators Lrp, LeuO, and HexA in the production of natural products. Lrp is a general activator of natural product biosynthesis in X. nematophila and for most compounds in TTO1. Microarray analysis confirmed these results in X. nematophila and enabled the identification of additional biosynthesis gene clusters (BGC) regulated by Lrp. Moreover, when promoters of two X. nematophila BGC were analyzed, transcriptional activation by Lrp was observed. In contrast, LeuO in X. nematophila and P. luminescens has both repressing and activating features, depending on the natural product examined. Furthermore, heterologous overexpression of leuO from X. nematophila in the closely related Xenorhabdus szentirmaii resulted in overproduction of several natural products including novel compounds. The presented findings could be of importance for establishing a tool for overproduction of secondary metabolites and subsequent identification of novel compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA