Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
2.
Nature ; 490(7421): 547-51, 2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23023132

RESUMEN

Mitochondrial respiratory function is frequently impaired in human cancers. However, the mechanisms by which mitochondrial dysfunction contributes to tumour progression remain elusive. Here we show in Drosophila imaginal epithelium that defects in mitochondrial function potently induce tumour progression of surrounding tissue in conjunction with oncogenic Ras. Our data show that Ras activation and mitochondrial dysfunction cooperatively stimulate production of reactive oxygen species, which causes activation of c-Jun amino (N)-terminal kinase (JNK) signalling. JNK cooperates with oncogenic Ras to inactivate the Hippo pathway, leading to upregulation of its targets Unpaired (an interleukin-6 homologue) and Wingless (a Wnt homologue). Mitochondrial dysfunction in Ras-activated cells further cooperates with Ras signalling in neighbouring cells with normal mitochondrial function, causing benign tumours to exhibit metastatic behaviour. Our findings provide a mechanistic basis for interclonal tumour progression driven by mitochondrial dysfunction and oncogenic Ras.


Asunto(s)
Progresión de la Enfermedad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias/patología , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Animales , Transformación Celular Neoplásica , Células Clonales/metabolismo , Células Clonales/patología , Ojo Compuesto de los Artrópodos/crecimiento & desarrollo , Ojo Compuesto de los Artrópodos/patología , Ojo Compuesto de los Artrópodos/ultraestructura , Modelos Animales de Enfermedad , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Discos Imaginales/metabolismo , Discos Imaginales/patología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Proteína Oncogénica p21(ras)/genética , Proteína Oncogénica p21(ras)/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba , Proteína Wnt1/metabolismo
3.
Adv Exp Med Biol ; 1076: 173-194, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29951820

RESUMEN

Over the last few decades, Drosophila cancer models have made great contributions to our understanding toward fundamental cancer processes. Particularly, the development of genetic mosaic technique in Drosophila has enabled us to recapitulate basic aspects of human cancers, including clonal evolution, tumor microenvironment, cancer cachexia, and anticancer drug resistance. The mosaic technique has also led to the discovery of important tumor-suppressor pathways such as the Hippo pathway and the elucidation of the mechanisms underlying tumor growth and metastasis via regulation of cell polarity, cell-cell cooperation, and cell competition. Recent approaches toward identification of novel therapeutics using fly cancer models have further proved Drosophila as a robust system with great potentials for cancer research as well as anti-cancer therapy.


Asunto(s)
Modelos Animales de Enfermedad , Drosophila melanogaster , Neoplasias , Animales , Humanos
4.
Dev Biol ; 403(2): 162-71, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25967126

RESUMEN

The c-Jun N-terminal kinase (JNK) pathway is a dual-functional oncogenic signaling that exerts both anti- and pro-tumor activities. However, the mechanism by which JNK switches its oncogenic roles depending on different cellular contexts has been elusive. Here, using the Drosophila genetics, we show that hyperactive Ras acts as a signaling switch that converts JNK's role from anti- to pro-tumor signaling through the regulation of Hippo signaling activity. In the normal epithelium, JNK signaling antagonizes the Hippo pathway effector Yorkie (Yki) through elevation of Warts activity, thereby suppressing tissue growth. In contrast, in the presence of hyperactive Ras, JNK signaling enhances Yki activation by accumulating F-actin through the activity of the LIM domain protein Ajuba, thereby promoting tissue growth. We also find that the epidermal growth factor receptor (EGFR) signaling uses this Ras-mediated conversion of JNK signaling to promote tissue growth. Our observations suggest that Ras-mediated switch of the JNK pathway from anti- to pro-tumor signaling could play crucial roles in tumorigenesis as well as in normal development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Discos Imaginales/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas/metabolismo , Proteínas ras/metabolismo , Animales , Proteínas de Drosophila/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transactivadores/metabolismo , Proteínas Señalizadoras YAP
5.
Cancer Sci ; 106(12): 1651-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26362609

RESUMEN

Tumor progression is classically viewed as the Darwinian evolution of subclones that sequentially acquire genetic mutations and autonomously overproliferate. However, growing evidence suggests that tumor microenvironment and subclone heterogeneity contribute to non-autonomous tumor progression. Recent Drosophila studies revealed a common mechanism by which clones of genetically altered cells trigger non-autonomous overgrowth. Such "oncogenic niche cells" (ONCs) do not overgrow but instead stimulate neighbor overgrowth and metastasis. Establishment of ONCs depends on competition and cooperation between heterogeneous cell populations. This review characterizes diverse ONCs identified in Drosophila and describes the genetic basis of non-autonomous tumor progression. Similar mechanisms may contribute to mammalian cancer progression and recurrence.


Asunto(s)
Carcinogénesis/patología , Neoplasias/patología , Microambiente Tumoral/fisiología , Animales , Carcinogénesis/genética , Drosophila , Humanos , Neoplasias/genética
6.
EMBO Rep ; 14(1): 65-72, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23196366

RESUMEN

Cell-cell interactions within the tumour microenvironment have crucial roles in epithelial tumorigenesis. Using Drosophila genetics, we show that the oncoprotein Src controls tumour microenvironment by Jun N-terminal kinase (JNK)-dependent regulation of the Hippo pathway. Clones of cells with elevated Src expression activate the Rac-Diaphanous and Ras-mitogen-activated protein kinase (MAPK) pathways, which cooperatively induce F-actin accumulation, thereby leading to activation of the Hippo pathway effector Yorkie (Yki). Simultaneously, Src activates the JNK pathway, which antagonizes the autonomous Yki activity and causes propagation of Yki activity to neighbouring cells, resulting in the overgrowth of surrounding tissue. Our data provide a mechanism to explain how oncogenic mutations regulate tumour microenvironment through cell-cell communication.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Larva/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Familia-src Quinasas/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Comunicación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Larva/genética , MAP Quinasa Quinasa 4/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Transactivadores/genética , Transactivadores/metabolismo , Microambiente Tumoral , Proteínas Señalizadoras YAP , Familia-src Quinasas/genética
7.
EMBO J ; 29(16): 2802-12, 2010 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-20639859

RESUMEN

14-3-3 proteins control various cellular processes, including cell cycle progression and DNA damage checkpoint. At the DNA damage checkpoint, some subtypes of 14-3-3 (beta and zeta isoforms in mammalian cells and Rad24 in fission yeast) bind to Ser345-phosphorylated Chk1 and promote its nuclear retention. Here, we report that 14-3-3gamma forms a complex with Chk1 phosphorylated at Ser296, but not at ATR sites (Ser317 and Ser345). Ser296 phosphorylation is catalysed by Chk1 itself after Chk1 phosphorylation by ATR, and then ATR sites are rapidly dephosphorylated on Ser296-phosphorylated Chk1. Although Ser345 phosphorylation is observed at nuclear DNA damage foci, it occurs more diffusely in the nucleus. The replacement of endogenous Chk1 with Chk1 mutated at Ser296 to Ala induces premature mitotic entry after ultraviolet irradiation, suggesting the importance of Ser296 phosphorylation in the DNA damage response. Although Ser296 phosphorylation induces the only marginal change in Chk1 catalytic activity, 14-3-3gamma mediates the interaction between Chk1 and Cdc25A. This ternary complex formation has an essential function in Cdc25A phosphorylation and degradation to block premature mitotic entry after DNA damage.


Asunto(s)
Proteínas 14-3-3/metabolismo , Daño del ADN , Mitosis , Proteínas Quinasas/metabolismo , Fosfatasas cdc25/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Células HeLa , Humanos , Fosforilación , Unión Proteica , Serina/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo
8.
J Cell Sci ; 124(Pt 6): 857-64, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21325031

RESUMEN

The keratin cytoskeleton performs several functions in epithelial cells and provides regulated interaction sites for scaffold proteins, including trichoplein. Previously, we found that trichoplein was localized on keratin intermediate filaments and desmosomes in well-differentiated, non-dividing epithelia. Here, we report that trichoplein is widely expressed and has a major function in the correct localization of the centrosomal protein ninein in epithelial and non-epithelial cells. Immunocytochemical analysis also revealed that this protein is concentrated at the subdistal to medial zone of both mother and daughter centrioles. Trichoplein binds the centrosomal proteins Odf2 and ninein, which are localized at the distal to subdistal ends of the mother centriole. Trichoplein depletion abolished the recruitment of ninein, but not Odf2, specifically at the subdistal end. However, Odf2 depletion inhibited the recruitment of trichoplein to a mother centriole, whereas ninein depletion did not. In addition, the depletion of each molecule impaired MT anchoring at the centrosome. These results suggest that trichoplein has a crucial role in MT-anchoring activity at the centrosome in proliferating cells, probably through its complex formation with Odf2 and ninein.


Asunto(s)
Proteínas Portadoras/metabolismo , Centrosoma/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Choque Térmico/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Portadoras/genética , Línea Celular , Proteínas del Citoesqueleto/genética , Proteínas de Choque Térmico/genética , Humanos , Microtúbulos/genética , Proteínas Nucleares/genética , Unión Proteica
9.
Fly (Austin) ; 16(1): 367-381, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36413374

RESUMEN

Cell-cell interactions within tumour microenvironment play crucial roles in tumorigenesis. Genetic mosaic techniques available in Drosophila have provided a powerful platform to study the basic principles of tumour growth and progression via cell-cell communications. This led to the identification of oncogenic cell-cell interactions triggered by endocytic dysregulation, mitochondrial dysfunction, cell polarity defects, or Src activation in Drosophila imaginal epithelia. Such oncogenic cooperations can be caused by interactions among epithelial cells, mesenchymal cells, and immune cells. Moreover, microenvironmental factors such as nutrients, local tissue structures, and endogenous growth signalling activities critically affect tumorigenesis. Dissecting various types of oncogenic cell-cell interactions at the single-cell level in Drosophila will greatly increase our understanding of how tumours progress in living animals.


Asunto(s)
Comunicación Celular , Drosophila , Animales , Carcinogénesis , Transducción de Señal , Polaridad Celular , Microambiente Tumoral
10.
Dev Cell ; 56(15): 2223-2236.e5, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34324859

RESUMEN

Cancer tissue often comprises multiple tumor clones with distinct oncogenic alterations such as Ras or Src activation, yet the mechanism by which tumor heterogeneity drives cancer progression remains elusive. Here, we show in Drosophila imaginal epithelium that clones of Ras- or Src-activated benign tumors interact with each other to mutually promote tumor malignancy. Mechanistically, Ras-activated cells upregulate the cell-surface ligand Delta while Src-activated cells upregulate its receptor Notch, leading to Notch activation in Src cells. Elevated Notch signaling induces the transcriptional repressor Zfh1/ZEB1, which downregulates E-cadherin and cell death gene hid, leading to Src-activated invasive tumors. Simultaneously, Notch activation in Src cells upregulates the cytokine Unpaired/IL-6, which activates JAK-STAT signaling in neighboring Ras cells. Elevated JAK-STAT signaling upregulates the BTB-zinc-finger protein Chinmo, which downregulates E-cadherin and thus generates Ras-activated invasive tumors. Our findings provide a mechanistic explanation for how tumor heterogeneity triggers tumor progression via cell-cell interactions.


Asunto(s)
Neoplasias/metabolismo , Proteína Oncogénica pp60(v-src)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Cadherinas/metabolismo , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Epitelio/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Genes ras/genética , Genes ras/fisiología , Discos Imaginales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteína Oncogénica pp60(v-src)/fisiología , Proteínas Proto-Oncogénicas p21(ras)/fisiología , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Dedos de Zinc
11.
J Biol Chem ; 284(49): 34223-30, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19837665

RESUMEN

Chk1, one of the critical transducers in DNA damage/replication checkpoints, prevents entry into mitosis through inhibition of Cdk1 activity. However, it has remained unclear how this inhibition is cancelled at the G(2)/M transition. We reported recently that Chk1 is phosphorylated at Ser(286) and Ser(301) by Cdk1 during mitosis. Here, we show that mitotic Chk1 phosphorylation is accompanied by Chk1 translocation from the nucleus to the cytoplasm in prophase. This translocation advanced in accordance with prophase progression and was regulated by Crm-1-dependent nuclear export. Exogenous Chk1 mutated at Ser(286) and Ser(301) to Ala (S286A/S301A) was observed mainly in the nuclei of prophase cells, although such nuclear accumulation was hardly observed in wild-type Chk1. Induction of S286A/S301A resulted in the delay of mitotic entry. Biochemical analyses using immunoprecipitated cyclin B(1)-Cdk1 complexes revealed S286A/S301A expression to block the adequate activation of Cdk1. In support of this, S286A/S301A expression retained Wee1 at higher levels and Cdk1-induced phosphorylation of cyclin B(1) and vimentin at lower levels. A kinase-dead version of S286A/S301A also localized predominantly in the nucleus but lost the ability to delay mitotic entry. These results indicate that Chk1 phosphorylation by Cdk1 participates in cytoplasmic sequestration of Chk1 activity, which releases Cdk1 inhibition in the nucleus and promotes mitotic entry.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Proteínas Quinasas/metabolismo , Transporte Activo de Núcleo Celular , Ciclo Celular , División Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Ciclina B1/metabolismo , Citoplasma/metabolismo , Fase G2 , Células HeLa , Humanos , Mitosis , Fosforilación , Vimentina/metabolismo
12.
Biochem Biophys Res Commun ; 377(4): 1227-31, 2008 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18983824

RESUMEN

We previously reported Chk1 to be phosphorylated at Ser286 and Ser301 by cyclin-dependent kinase (Cdk) 1 during mitosis [T. Shiromizu et al., Genes Cells 11 (2006) 477-485]. Here, we demonstrated that Chk1-Ser286 and -Ser301 phosphorylation also occurs in hydroxyurea (HU)-treated or ultraviolet (UV)-irradiated cells. Unlike the mitosis case, however, Chk1 was phosphorylated not only at Ser286 and Ser301 but also at Ser317 and Ser345 in the checkpoint response. Treatment with Cdk inhibitors diminished Chk1 phosphorylation at Ser286 and Ser301 but not at Ser317 and Ser345 with the latter. In vitro analyses revealed Ser286 and Ser301 on Chk1 to serve as two major phosphorylation sites for Cdk2. Immunoprecipitation analyses further demonstrated that Ser286/Ser301 and Ser317/Ser345 phosphorylation occur in the same Chk1 molecule during the checkpoint response. In addition, Ser286/Ser301 phosphorylation by Cdk2 was observed in Chk1 mutated to Ala at Ser317 and Ser345 (S317A/S345A), as well as Ser317/Ser345 phosphorylation by ATR was in S286A/S301A. Therefore, Chk1 phosphorylation in the checkpoint response is regulated not only by ATR but also by Cdk2.


Asunto(s)
Daño del ADN , Replicación del ADN , Proteínas Quinasas/metabolismo , Serina/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , ADN/efectos de los fármacos , ADN/efectos de la radiación , Replicación del ADN/efectos de los fármacos , Replicación del ADN/efectos de la radiación , Células HeLa , Humanos , Hidroxiurea/farmacología , Inmunoprecipitación , Fosforilación , Proteínas Quinasas/genética , Serina/genética , Rayos Ultravioleta
13.
FEBS Lett ; 580(3): 894-9, 2006 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-16430890

RESUMEN

Two alpha-type CK2-activated PKAs (CK2-aPKAIalpha and CK2-aPKAIIalpha) were biochemically characterized in vitro using GST-HBV core fusion protein (GST-Hcore) and GST-Hcore157B as phosphate acceptors. It was found that (i), in the absence of cAMP, these two CK2-aPKAs phosphorylated both Ser-170 and Ser-178 on GST-Hcore and Hcore157B; (ii) this phosphorylation was approx. 4-fold higher than their phosphorylation by cAMP-activated PKAs; and (iii) suramin effectively inhibited the phosphorylation of Hcore157B by CK2-aPKAIIalpha through its direct binding to Hcore157B in vitro. These results suggest that high phosphorylation of HBV-CP by two CK2-aPKAs, in the absence of cAMP, may be involved in the pregenomic RNA (pgRNA) encapsidation and DNA-replication in HBV-infected cells.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Virus de la Hepatitis B/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas del Núcleo Viral/metabolismo , Animales , Antineoplásicos/farmacología , Bovinos , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico , Activación Enzimática , Genoma Viral/fisiología , Hepatitis B/enzimología , Humanos , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , ARN Viral/metabolismo , Serina/metabolismo , Suramina/farmacología , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiología
14.
J Cell Biol ; 197(3): 391-405, 2012 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-22529102

RESUMEN

The primary cilium is an antenna-like organelle that modulates differentiation, sensory functions, and signal transduction. After cilia are disassembled at the G0/G1 transition, formation of cilia is strictly inhibited in proliferating cells. However, the mechanisms of this inhibition are unknown. In this paper, we show that trichoplein disappeared from the basal body in quiescent cells, whereas it localized to mother and daughter centrioles in proliferating cells. Exogenous expression of trichoplein inhibited primary cilia assembly in serum-starved cells, whereas ribonucleic acid interference-mediated depletion induced primary cilia assembly upon cultivation with serum. Trichoplein controlled Aurora A (AurA) activation at the centrioles predominantly in G1 phase. In vitro analyses confirmed that trichoplein bound and activated AurA directly. Using trichoplein mutants, we demonstrate that the suppression of primary cilia assembly by trichoplein required its ability not only to localize to centrioles but also to bind and activate AurA. Trichoplein or AurA knockdown also induced G0/G1 arrest, but this phenotype was reversed when cilia formation was prevented by simultaneous knockdown of IFT-20. These data suggest that the trichoplein-AurA pathway is required for G1 progression through a key role in the continuous suppression of primary cilia assembly.


Asunto(s)
Proteínas Portadoras/metabolismo , Proliferación Celular , Centriolos/metabolismo , Cilios/fisiología , Fase G1/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Aurora Quinasas , Western Blotting , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Diferenciación Celular , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Microtúbulos/metabolismo , Morfogénesis , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Transducción de Señal
15.
J Genet Genomics ; 38(10): 461-70, 2011 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-22035867

RESUMEN

Loss of apico-basal polarity is one of the crucial factors that drives epithelial tumor progression. scribble/discs large/lethal giant larvae (scrib/dlg/lgl), a group of apico-basal polarity genes, were initially identified as members of "neoplastic" tumor-suppressors in flies. The components of the Hippo signaling pathway, which is crucial for organ size control and cancer development, were also identified through Drosophila genetic screens as members of "hyperplastic" tumor-suppressors. Accumulating evidence in recent studies implies that these two tumor-suppressor signaling pathways are not mutually exclusive but rather cooperatively act to give rise to highly malignant tumors. The interaction of these tumor-suppressor pathways could include deregulations of actin cytoskeleton, cell-cell contact, and apical-domain size of the epithelial cell.


Asunto(s)
Polaridad Celular/genética , Transformación Celular Neoplásica/genética , Drosophila melanogaster/genética , Genes Supresores de Tumor , Neoplasias/genética , Actinas/genética , Animales , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación Neoplásica de la Expresión Génica , Genes ras/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
16.
Biochem Pharmacol ; 75(6): 1358-69, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18191813

RESUMEN

Stimulation of L929 cells with tumor necrosis factor-alpha (TNFalpha) caused cell death accompanied by a release of arachidonic acid (AA). Although the inhibition of caspases has been shown to cause necrosis in TNFalpha-treated L929 cells, its role in the TNFalpha-induced release of AA has not been elucidated. The release of AA is tightly regulated by phospholipase A(2) (PLA(2)). To find out the mechanisms underlying the TNFalpha-induced release of AA, we investigated the relationship between TNFalpha stimulation and PLA(2) regulation with and without zVAD, an inhibitor of caspases. In the present study, we found that treatment with TNFalpha and zVAD stimulated release of AA and cell death in C12 cells (a variant of L929 cells lacking alpha type of cytosolic PLA(2) (cPLA(2)alpha)). Stimulation with TNFalpha/zVAD also caused the release of AA from L929-cPLA(2)alpha-siRNA cells. Treatment with pyrrophenone (a selective inhibitor of cPLA(2)alpha) completely inhibited the TNFalpha-induced release of AA, but only partially inhibited the TNFalpha/zVAD-induced response in L929 cells. The TNFalpha/zVAD-induced release of AA from C12 and L929-cPLA(2)alpha-siRNA cells was pyrrophenone-insensitive, but inhibited by treatment with butylated hydroxyanisole (BHA, an antioxidant). Treatment with dithiothreitol, which inactivates secretory PLA(2) activity, decreased the amount of AA released by TNFalpha/zVAD. TNFalpha/zVAD appears to stimulate release of AA from C12 cells in a cPLA(2)alpha-independent, BHA-sensitive manner. The possible roles of secretory PLA(2) and reactive oxygen species from different pools in the release of AA and cell death were discussed.


Asunto(s)
Clorometilcetonas de Aminoácidos/farmacología , Ácido Araquidónico/metabolismo , Inhibidores de Caspasas , Factor de Necrosis Tumoral alfa/farmacología , Animales , Antioxidantes/farmacología , Muerte Celular , Línea Celular , Citosol , Humanos , Ratones , Oxidantes/farmacología , Inhibidores de Fosfolipasa A2 , Fosfolipasas A2/genética , Fosfolipasas A2/metabolismo , Pirrolidinas/farmacología , Interferencia de ARN
17.
Biol Pharm Bull ; 29(9): 1810-4, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16946490

RESUMEN

The inhibitory effect of suramin on the phosphorylation of GST-HBV core fusion protein (GST-Hcore) and two GST-Hcore fusion polypeptides (Hcore157B and Hcore164B) by two alpha-type cAMP-dependent protein kinases (PKAIalpha and PKAIIalpha) was biochemically investigated in vitro. It was found that (i) this phosphorylation was inhibited by suramin at a low concentration (IC(50)=approx. 10 nM); (ii) a relative high dose of suramin was required to inhibit an autophosphorylation of PKAIIalpha (IC(50)=approx. 0.7 muM) and the PKAIIalpha-mediated phosphorylation of histone H2B (IC(50)=approx. 0.4 muM); (iii) the PKAIIalpha-mediated phosphorylation of Hcore157B was more sensitive to suramin than the phosphorylation of Hcore157B by Ca(2+)-dependent protein kinase (PKC); and (iv) suramin had a high binding affinity for Hcore157B, but not for histone H2B in vitro. These results suggest that suramin selectively inhibits the PKA-mediated phosphorylation of HBV-CP through the direct binding in vitro of suramin to the Arg-rich C-terminal region (containing three potential phosphorylation sites for PKA) on HBV-CP.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Virus de la Hepatitis B/efectos de los fármacos , Suramina/farmacología , Proteínas del Núcleo Viral/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fosforilación , Proteínas Recombinantes de Fusión/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Suramina/metabolismo , Proteínas del Núcleo Viral/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA