Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Hered ; 115(3): 302-310, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38451162

RESUMEN

The Pacific whiteleg shrimp Penaeus (Litopenaeus) vannamei is a highly relevant species for the world's aquaculture development, for which an incomplete genome is available in public databases. In this work, PacBio long-reads from 14 publicly available genomic libraries (131.2 Gb) were mined to improve the reference genome assembly. The libraries were assembled, polished using Illumina short-reads, and scaffolded with P. vannamei, Feneropenaeus chinensis, and Penaeus monodon genomes. The reference-guided assembly, organized into 44 pseudo-chromosomes and 15,682 scaffolds, showed an improvement from previous reference genomes with a genome size of 2.055 Gb, N50 of 40.14 Mb, L50 of 21, and the longest scaffold of 65.79 Mb. Most orthologous genes (92.6%) of the Arthropoda_odb10 database were detected as "complete," and BRAKER predicted 21,816 gene models; from these, we detected 1,814 single-copy orthologues conserved across the genomic references for Marsupenaeus japonicus, F. chinensis, and P. monodon. Transcriptomic-assembly data aligned in more than 99% to the new reference-guided assembly. The collinearity analysis of the assembled pseudo-chromosomes against the P. vannamei and P. monodon reference genomes showed high conservation in different sets of pseudo-chromosomes. In addition, more than 21,000 publicly available genetic marker sequences were mapped to single-site positions. This new assembly represents a step forward to previously reported P. vannamei assemblies. It will be helpful as a reference genome for future studies on the evolutionary history of the species, the genetic architecture of physiological and sex-determination traits, and the analysis of the changes in genetic diversity and composition of cultivated stocks.


Asunto(s)
Genoma , Penaeidae , Penaeidae/genética , Animales , Bases de Datos Genéticas , Genómica/métodos , Anotación de Secuencia Molecular
2.
J Fish Dis ; 47(6): e13913, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38421380

RESUMEN

Piscirickettsiosis is the main cause of mortality in salmonids of commercial importance in Chile, which is caused by Piscirickettsia salmonis, a Gram-negative, γ-proteobacteria that can produce biofilm as one of its virulence factors. The Chilean salmon industry uses large amounts of antibiotics to control piscirickettsiosis outbreaks, which has raised concern about its environmental impact and the potential to induce antibiotic resistance. Thus, the use of phytogenic feed additives (PFA) with antibacterial activity emerges as an interesting alternative to antimicrobials. Our study describes the antimicrobial action of an Andrographis paniculate-extracted PFA on P. salmonis planktonic growth and biofilm formation. We observed complete inhibition of planktonic and biofilm growth with 500 and 400 µg/mL of PFA for P. salmonis LF-89 and EM-90-like strains, respectively. Furthermore, 500 µg/mL of PFA was bactericidal for both evaluated bacterial strains. Sub-inhibitory doses of PFA increase the transcript levels of stress (groEL), biofilm (pslD), and efflux pump (acrB) genes for both P. salmonis strains in planktonic and sessile conditions. In conclusion, our results demonstrate the antibacterial effect of PFA against P. salmonis in vitro, highlighting the potential of PFA as an alternative to control Piscirickettsiosis.


Asunto(s)
Alimentación Animal , Biopelículas , Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Piscirickettsia/efectos de los fármacos , Piscirickettsia/fisiología , Enfermedades de los Peces/microbiología , Infecciones por Piscirickettsiaceae/veterinaria , Infecciones por Piscirickettsiaceae/microbiología , Animales , Alimentación Animal/análisis , Antibacterianos/farmacología , Suplementos Dietéticos/análisis , Extractos Vegetales/farmacología , Dieta/veterinaria , Chile
3.
Microb Pathog ; 174: 105932, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36473669

RESUMEN

Renibacterium salmoninarum is one of the oldest known fish bacterial pathogens. This Gram-positive bacterium is the causative agent of Bacterial Kidney Disease (BKD), a chronic infection that primarily infects salmonids at low temperatures. Externally, infected fish may show exophthalmos, skin blisters, ulcerations, and hemorrhages at the base of the fins and along the lateral line. Internally, the kidney, heart, spleen, and liver may show signs of inflammation. The best characterized virulence factor of R. salmoninarum is p57, a 57 kDa protein located on the bacterial cell surface and secreted into surrounding fish tissue. The p57 protein in fish is the main mediator in suppressing the immune system, reducing antibody production, and intervening in cytokine activity. In this review, we will discuss aspects such as single nucleotide polymorphisms (SNPs) that modify the DNA sequence, variants in the number of copies of MSA genes, physical-chemical properties of the signal peptides, and the limited iron conditions that can modify p57 expression and increase the virulence of R. salmoninarum.


Asunto(s)
Enfermedades de los Peces , Infecciones por Bacterias Grampositivas , Animales , Proteómica , Virulencia/genética , Proteínas de la Membrana Bacteriana Externa/genética , Genómica , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Grampositivas/veterinaria , Infecciones por Bacterias Grampositivas/microbiología
4.
Fish Shellfish Immunol ; 139: 108887, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37290611

RESUMEN

Piscirickettsiosis outbreaks due to Piscirickettsia salmonis occur globally in the Chilean salmon aquaculture generating significant monetary losses in the industry. P. salmonis secretes outer membrane vesicles (OMVs) which are naturally non-replicating and highly immunogenic spherical nanoparticles. P. salmonis OMVs has been shown to induce immune response in zebrafish; however, the immune response induced by these vesicles in salmonids has not been evaluated. In this study, we inoculated Atlantic salmon with 10 and 30 µg doses of P. salmonis OMVs and took samples for 12 days. qPCR analysis indicated an inflammatory response. Thus, the inflammatory genes evaluated were up- or down-regulated at several times in liver, head kidney and spleen. In addition, the liver was the organ most immune-induced, mainly in the 30 µg-dose. Interestingly, co-expression of pro- and anti-inflammatory cytokines was evidenced by the prominent expression of il-10 at day 1 in spleen and also in head kidney on days 3, 6 and 12, while il-10 and tgf-ß were up-regulated on days 3, 6 and 12 in liver. Importantly, we detected the production of IgM against proteins of P. salmonis in the serum collected from immunized fish after 14 days. Thus, 40 and 400 µg OMVs induced the production of highest IgM levels; however, no statistical difference in the immunoglobulin levels produced by these OMVs doses were detected. The current study provides evidence that OMVs released by P. salmonis induced a pro-inflammatory responses and IgM production in S. salar, while regulatory genes were induced in order to regulate their effects and achieve the balance of the inflammatory response.


Asunto(s)
Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Salmo salar , Animales , Salmo salar/genética , Interleucina-10 , Pez Cebra , Piscirickettsia/fisiología , Inmunoglobulina M , Infecciones por Piscirickettsiaceae/veterinaria
5.
Mol Cell ; 49(5): 959-71, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23375500

RESUMEN

The proapoptotic Bcl-2 protein Bax is predominantly found in the cytosol of nonapoptotic cells and is commonly thought to translocate to mitochondria following an apoptotic stimulus. The current model for Bax activation is that BH3 proteins bind to cytosolic Bax, initiating mitochondrial targeting and outer-membrane permeabilization. Here, we challenge this and show that Bax is constitutively targeted to mitochondria but in nonapoptotic cells is constantly translocated back to the cytosol. Using live-cell spinning-disk confocal imaging with a combination of FLIP, FRAP, and photoactivatable GFP-Bax, we demonstrate that disrupting adhesion-dependent survival signals slows the rate of Bax's dissociation from mitochondria, leading to its accumulation on the outer mitochondrial membrane. The overall accumulation of mitochondrial Bax following loss of survival signaling sensitizes cells to proapoptotic BH3 proteins. Our findings show that Bax is normally in a dynamic equilibrium between cytosol and mitochondria, enabling fluctuations in survival signals to finely adjust apoptotic sensitivity.


Asunto(s)
Apoptosis , Citosol/metabolismo , Mitocondrias/metabolismo , Proteína X Asociada a bcl-2/genética , Animales , Células Cultivadas , Células HEK293 , Humanos , Ratones , Membranas Mitocondriales/metabolismo , Transfección , Proteína X Asociada a bcl-2/metabolismo
6.
J Fish Biol ; 98(5): 1267-1280, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33349917

RESUMEN

The tropical eastern Pacific (TEP) is a highly dynamic region and a model system to study how habitat discontinuities affect the distribution of shorefishes, particularly for species that display ontogenetic habitat shifts, including snappers (Lutjanidae). To evaluate the genetic structure of the Pacific red snapper (Lutjanus peru) and the yellow snapper (Lutjanus argentiventris) throughout their distribution range along the TEP, 13 and 11 microsatellite loci were analysed, respectively. The genetic diversity of L. peru (N = 446) and L. argentiventris (N = 170) was evaluated in 10 and 5 localities, respectively, showing slightly higher but non-significant values in the Gulf of California for both species. The genetic structure analysis identified the presence of significant genetic structure in both species, but the locations of the identified barriers for the gene flow differed between species. The principal driver for the genetic structure at large scales >2500 km was isolation by distance. At smaller scales (<250 km), the habitat discontinuity for juveniles and adults and the environmental differences throughout the distribution range represented potential barriers to gene flow between populations for both species.


Asunto(s)
Repeticiones de Microsatélite/genética , Perciformes/genética , Distribución Animal , Animales , Ecosistema , Flujo Génico , Genética de Población , Océano Pacífico , Perú , Clima Tropical
7.
Gen Comp Endocrinol ; 293: 113466, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32194046

RESUMEN

Cortisol is the main corticosteroid in teleosts, exerting multiple functions by activating glucocorticoid receptors (GR). Most teleost species have two GR genes, gr-1 and gr-2. Some teleost also presents two splice variants for gr-1; gr-1a and gr-1b. In this study, we report for first time the presence of 2 homeologous genes for gr-1 and gr-2, located on chromosomes 4q-13q (gr-1) and 5p-9q (gr-2) of the Salmo salar genome. Furthermore, our results describe gr-1 splice variants derived from chromosome 4 and 13, sharing typical teleost GR elements such as the 9 amino acid insertion in the DNA binding domain (DBD) and variations in the length of the ligand binding domain (LBD). Three splice variants were predicted for the gr-2 homeologous gene in chromosome 5, with differences of a 5 amino acid insertion in the DBD. We also identified an uncommon truncated gr-2 gene in chromosome 9 in salmon, which lacked the DBD and LBD domains. Finally, by designing specific primers for each predicted splice variant, we validated and evaluated the expression of their transcripts in S. salar subjected to stress caused by stocking density. Differences were observed in the expression of all identified mRNAs, revealing that gr-1 and gr-2 splice variants were upregulated in head kidney and gills of post-stressed fish. In conclusion, our findings suggest that from specific salmonid genomic duplication (125 MYA), two gene copies of each GR receptor were generated in S. salar. The identified splice variants could contribute to the variability of GR receptor complex modulation expression during stressful events, leading to variations in physiological responses in fish.


Asunto(s)
Empalme Alternativo/genética , Receptores de Glucocorticoides/genética , Salmo salar/genética , Estrés Fisiológico/genética , Animales , Regulación de la Expresión Génica , Genoma , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética
8.
Genomics ; 110(6): 423-429, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30308223

RESUMEN

Selective breeding of shrimp has major potential to enhance production traits, including growth and disease resistance. Genetic characterization of broodstock populations is a key element of breeding programs, as it enables decisions on inbreeding restrictions, family structure, and the potential use of genomic selection. Single Nucleotide Polymorphisms (SNPs) are suitable genetic markers for this purpose. A set of SNPs was developed to characterize commercial breeding stocks in Mexico. Individuals from local and imported lines were selected for sequencing using the nextRAD technique, resulting in the identification of 2619 SNPs. Genetic structure analysis showed three to five genetic groups of Ecuadorian and Mexican origins. A subset of 1231 SNPs has potential for stock identification and management. Further, three SNPs were identified as candidate sex-linked markers. The role of SNPs possibly associated with genes related to traits of importance to shrimp farming, such as growth and immune response, should be further investigated.


Asunto(s)
Código de Barras del ADN Taxonómico , Penaeidae/genética , Polimorfismo de Nucleótido Simple , Animales , Cruzamiento , Femenino , Marcadores Genéticos , Masculino
9.
Dis Aquat Organ ; 120(3): 205-15, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27503916

RESUMEN

Francisellosis, an emerging disease in tilapia Oreochromis spp., is caused by the facultative, intracellular bacterium Francisella noatunensis subsp. orientalis, which is present in various countries where tilapia farming is commercially important. We confirmed the presence of francisellosis in Mexican tilapia cultures in association with an outbreak during the second semester of 2012. Broodstock fish presented a mortality rate of approximately 40%, and disease was characterized by histologically classified granulomas, or whitish nodules, in different organs, mainly the spleen and kidney. Through DNA obtained from infected tissue and pure cultures in a cysteine heart medium supplemented with hemoglobin, F. noatunensis subsp. orientalis was initially confirmed through the amplification and analysis of the 16S rRNA gene and the internal transcribed spacer region. Phylogenetic analysis of these genes demonstrated close similarity with previously reported F. noatunensis subsp. orientalis sequences obtained from infected tilapia from various countries. The identification of this subspecies as the causative agent of the outbreak was confirmed using the iglC gene as a target sequence, which showed 99.5% identity to 2 F. noatunensis subsp. orientalis strains (Ethime-1 and Toba04). These findings represent the first documented occurrence of francisellosis in Mexican tilapia cultures, which highlights the importance of establishing preventative measures to minimize the spread of this disease within the Mexican aquaculture industry.


Asunto(s)
Enfermedades de los Peces/microbiología , Francisella/aislamiento & purificación , Infecciones por Bacterias Gramnegativas/veterinaria , Tilapia , Animales , Acuicultura , ADN Bacteriano/genética , ADN Espaciador Ribosómico/genética , Enfermedades de los Peces/epidemiología , Francisella/clasificación , Francisella/genética , Infecciones por Bacterias Gramnegativas/epidemiología , Infecciones por Bacterias Gramnegativas/microbiología , México/epidemiología , Filogenia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
10.
Dis Aquat Organ ; 115(3): 233-44, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26290508

RESUMEN

Piscirickettsia salmonis is the etiological agent of piscirickettsiosis, a severe disease causing high mortalities in salmonids. This bacterium has been previously identified and isolated in all cultivated salmonids in Chile and worldwide, including Salmo salar, Oncorhynchus kisutch, and O. mykiss, in addition to being found in non-salmonid species such as Dicentrarchus labrax and Atractoscion nobilis. In this study, the 16S rRNA gene and intergenic spacer ITS-1 of P. salmonis were amplified by PCR from DNA samples extracted from the native Chilean fish species Eleginops maclovinus, Odontesthes regia, Sebastes capensis, and Salilota australis. Analysis of the 16S rRNA sequences from O. regia demonstrated a close phylogenetic relationship with the 16S rRNA gene in the Chilean EM-90 strain. The 16S rRNA sequences from E. maclovinus, S. capensis, and S. australis were related to the Chilean LF-89 sequence and Scottish strains. To confirm these findings, analysis of P. salmonis ITS-1 sequences obtained from the 4 sampled native species demonstrated a high degree of identity and a close phylogenetic relationship with Chilean P. salmonis sequences, including LF-89 and EM-90. These results suggest a strong relationship between the nucleotide sequences from the 16S rRNA and ITS-1 genes amplified from native fish with those sequences described in the first P. salmonis strains to be identified and isolated in Chile.


Asunto(s)
Enfermedades de los Peces/microbiología , Piscirickettsia/genética , Infecciones por Piscirickettsiaceae/veterinaria , Animales , Chile/epidemiología , ADN Espaciador Ribosómico/genética , Enfermedades de los Peces/epidemiología , Peces , Filogenia , Infecciones por Piscirickettsiaceae/epidemiología , Infecciones por Piscirickettsiaceae/microbiología , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
11.
Dis Aquat Organ ; 114(1): 11-20, 2015 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-25958803

RESUMEN

White spot disease (WSD) causes high mortality in cultured shrimp throughout the world. Its etiologic agent is the white spot syndrome virus (WSSV). The genomic repeat regions ORF 75, ORF 94, and ORF 125 have been used to classify WSSV isolates in epidemiological studies using PCR with specific primers and sequencing. The present study investigated the variation in nucleotide sequences from 107, 150, and 143 isolates of WSSV collected from Litopenaeus vannamei shrimp ponds with WSD outbreaks in northwestern Mexico during the period 2010-2012, in the genomic repeat regions ORFs 75, 94, and 125, respectively. The haplotypic nomenclature for each isolate was based on the number of repeat units and the position of single nucleotide polymorphisms on each ORF. We report finding 17, 43, and 66 haplotypes of ORFs 75, 94, and 125, respectively. The study found high haplotypic diversity in WSSV using the complete sequences of ORFs 94 and 125 as independent variables, but low haplotypic diversity for ORF 75. Different haplotypes of WSSV were found from region-to-region and year-to-year, though some individual haplotypes were found in different places and in more than one growing cycle. While these results suggest a high rate of mutation of the viral genome at these loci, or perhaps the introduction of new viral strains into the area, they are useful as a tool for epidemiological surveys. Two haplotypes from some of the ORFs in the same shrimp were encountered, suggesting the possibility of multiple infections.


Asunto(s)
Penaeidae/virología , Virus del Síndrome de la Mancha Blanca 1/genética , Virus del Síndrome de la Mancha Blanca 1/fisiología , Animales , Acuicultura , ADN Viral/genética , Brotes de Enfermedades , Genotipo , Interacciones Huésped-Patógeno , México , Factores de Tiempo
12.
J Invertebr Pathol ; 116: 8-12, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24300441

RESUMEN

This study investigated whether white spot syndrome virus and Infectious hypodermal and hematopoietic necrosis virus, can survive in wild invertebrates and vertebrates in the environment surrounding shrimp farms along the Pacific coast of Mexico. The evidences imply that both viruses have a potential of persisting in crabs, blue, white and brown shrimps. The most prevalent virus, IHHNV was present in 19.5% (344/1736) followed by WSSV in 3.6% (65/1736). Coinfection of WSSV and IHHNV was also detected in crabs, blue and white shrimps. This is the first prevalence report of WSSV and IHHNV associated with wildlife species in Mexico.


Asunto(s)
Organismos Acuáticos/virología , Densovirinae/aislamiento & purificación , Virus del Síndrome de la Mancha Blanca 1/aislamiento & purificación , Animales , Susceptibilidad a Enfermedades , México
13.
Ren Fail ; 36(7): 1142-4, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24827072

RESUMEN

Several vascular abnormalities have been reported in autosomal dominant polycystic kidney disease (ADPKD). Occlusion of the renal artery is uncommon in ADPKD and can be associated with hypertension. We report a 38-year-old woman with ADPKD and severe hypertension, abdominal magnetic resonance angiogram and arteriography revealed left renal artery total occlusion. A revascularization approach was not considered feasible and she was given conservative treatment. We review the literature and make some comments about renal artery occlusion in ADPKD. This association should be kept in mind in cases of ADPKD with severe or resistant hypertension.


Asunto(s)
Hipertensión/etiología , Riñón Poliquístico Autosómico Dominante/complicaciones , Obstrucción de la Arteria Renal/diagnóstico , Adulto , Femenino , Humanos , Obstrucción de la Arteria Renal/complicaciones
14.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467404

RESUMEN

The mitochondrial contact site and cristae organizing system (MICOS) is important for crista junction formation and for maintaining inner mitochondrial membrane architecture. A key component of the MICOS complex is MIC60, which has been well studied in yeast and cell culture models. However, only one recent study has demonstrated the embryonic lethality of losing Immt (the gene encoding MIC60) expression. Tamoxifen-inducible ROSA-CreERT2-mediated deletion of Immt in adult mice disrupted the MICOS complex, increased mitochondria size, altered cristae morphology, and was lethal within 12 d. Pathologically, these mice displayed defective intestinal muscle function (paralytic ileus) culminating in dehydration. We also identified bone marrow (BM) hypocellularity in Immt-deleted mice, although BM transplants from wild-type mice did not improve survival. Altogether, this inducible mouse model demonstrates the importance of MIC60 in vivo, in both hematopoietic and non-hematopoietic tissues, and provides a valuable resource for future mechanistic investigations into the MICOS complex.


Asunto(s)
Membranas Asociadas a Mitocondrias , Proteínas Mitocondriales , Animales , Ratones , Proteínas Mitocondriales/metabolismo , Membranas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo
15.
Nat Cell Biol ; 26(2): 194-206, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38332353

RESUMEN

Mitochondrial DNA (mtDNA) encodes essential subunits of the oxidative phosphorylation system, but is also a major damage-associated molecular pattern (DAMP) that engages innate immune sensors when released into the cytoplasm, outside of cells or into circulation. As a DAMP, mtDNA not only contributes to anti-viral resistance, but also causes pathogenic inflammation in many disease contexts. Cells experiencing mtDNA stress caused by depletion of the mtDNA-packaging protein, transcription factor A, mitochondrial (TFAM) or during herpes simplex virus-1 infection exhibit elongated mitochondria, enlargement of nucleoids (mtDNA-protein complexes) and activation of cGAS-STING innate immune signalling via mtDNA released into the cytoplasm. However, the relationship among aberrant mitochondria and nucleoid dynamics, mtDNA release and cGAS-STING activation remains unclear. Here we show that, under a variety of mtDNA replication stress conditions and during herpes simplex virus-1 infection, enlarged nucleoids that remain bound to TFAM exit mitochondria. Enlarged nucleoids arise from mtDNA experiencing replication stress, which causes nucleoid clustering via a block in mitochondrial fission at a stage when endoplasmic reticulum actin polymerization would normally commence, defining a fission checkpoint that ensures mtDNA has completed replication and is competent for segregation into daughter mitochondria. Chronic engagement of this checkpoint results in enlarged nucleoids trafficking into early and then late endosomes for disposal. Endosomal rupture during transit through this endosomal pathway ultimately causes mtDNA-mediated cGAS-STING activation. Thus, we propose that replication-incompetent nucleoids are selectively eliminated by an adaptive mitochondria-endosomal quality control pathway that is prone to innate immune system activation, which might represent a therapeutic target to prevent mtDNA-mediated inflammation during viral infection and other pathogenic states.


Asunto(s)
ADN Mitocondrial , Proteínas de Unión al ADN , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Replicación del ADN , Endosomas/metabolismo , Nucleotidiltransferasas/genética , Inflamación/genética , Proteínas Mitocondriales/metabolismo
16.
Front Immunol ; 14: 1187209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187753

RESUMEN

Nutritional immunity regulates the homeostasis of micronutrients such as iron, manganese, and zinc at the systemic and cellular levels, preventing the invading microorganisms from gaining access and thereby limiting their growth. Therefore, the objective of this study was to evaluate the activation of nutritional immunity in specimens of Atlantic salmon (Salmo salar) that are intraperitoneally stimulated with both live and inactivated Piscirickettsia salmonis. The study used liver tissue and blood/plasma samples on days 3, 7, and 14 post-injections (dpi) for the analysis. Genetic material (DNA) of P. salmonis was detected in the liver tissue of fish stimulated with both live and inactivated P. salmonis at 14 dpi. Additionally, the hematocrit percentage decreased at 3 and 7 dpi in fish stimulated with live P. salmonis, unchanged in fish challenged with inactivated P. salmonis. On the other hand, plasma iron content decreased during the experimental course in fish stimulated with both live and inactivated P. salmonis, although this decrease was statistically significant only at 3 dpi. Regarding the immune-nutritional markers such as tfr1, dmt1, and ireg1 were modulated in the two experimental conditions, compared to zip8, ft-h, and hamp, which were down-regulated in fish stimulated with live and inactivated P. salmonis during the course experimental. Finally, the intracellular iron content in the liver increased at 7 and 14 dpi in fish stimulated with live and inactivated P. salmonis, while the zinc content decreased at 14 dpi under both experimental conditions. However, stimulation with live and inactivated P. salmonis did not alter the manganese content in the fish. The results suggest that nutritional immunity does not distinguish between live and inactivated P. salmonis and elicits a similar immune response. Probably, this immune mechanism would be self-activated with the detection of PAMPs, instead of a sequestration and/or competition of micronutrients by the living microorganism.


Asunto(s)
Piscirickettsia , Salmo salar , Animales , Manganeso , Piscirickettsia/genética , Hierro
17.
bioRxiv ; 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37503076

RESUMEN

High energy-demanding tissues, such as skeletal muscle, require mitochondrial proteostasis to function properly. Two quality-control mechanisms, the ubiquitin proteasome system (UPS) and the release of mitochondria-derived vesicles, safeguard mitochondrial proteostasis. However, whether these processes interact is unknown. Here we show that the E3 ligase CRL5 Ozz , a member of the UPS, and its substrate Alix control the mitochondrial concentration of Slc25A4, a solute carrier that is essential for ATP production. The mitochondria in Ozz -/- or Alix -/- skeletal muscle share overt morphologic alterations (they are supernumerary, swollen, and dysmorphic) and have abnormal metabolomic profiles. We found that CRL5 Ozz ubiquitinates Slc25A4 and promotes its proteasomal degradation, while Alix facilitates SLC25A4 loading into exosomes destined for lysosomal destruction. The loss of Ozz or Alix offsets steady-state levels of Slc25A4, which disturbs mitochondrial metabolism and alters muscle fiber composition. These findings reveal hitherto unknown regulatory functions of Ozz and Alix in mitochondrial proteostasis.

18.
Front Immunol ; 13: 849752, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493529

RESUMEN

The innate immune system can limit the growth of invading pathogens by depleting micronutrients at a cellular and tissue level. However, it is not known whether nutrient depletion mechanisms discriminate between living pathogens (which require nutrients) and pathogen-associated molecular patterns (PAMPs) (which do not). We stimulated SHK-1 cells with different PAMPs (outer membrane vesicles of Piscirickettsia salmonis "OMVs", protein extract of P. salmonis "TP" and lipopolysaccharides of P. salmonis "LPS") isolated from P. salmonis and evaluated transcriptional changes in nutritional immunity associated genes. Our experimental treatments were: Control (SHK-1 stimulated with bacterial culture medium), OMVs (SHK-1 stimulated with 1µg of outer membrane vesicles), TP (SHK-1 stimulated with 1µg of total protein extract) and LPS (SHK-1 stimulated with 1µg of lipopolysaccharides). Cells were sampled at 15-, 30-, 60- and 120-minutes post-stimulation. We detected increased transcription of zip8, zip14, irp1, irp2 and tfr1 in all three experimental conditions and increased transcription of dmt1 in cells stimulated with OMVs and TP, but not LPS. Additionally, we observed generally increased transcription of ireg-1, il-6, hamp, irp1, ft-h and ft-m in all three experimental conditions, but we also detected decreased transcription of these markers in cells stimulated with TP and LPS at specific time points. Our results demonstrate that SHK-1 cells stimulated with P. salmonis PAMPs increase transcription of markers involved in the transport, uptake, storage and regulation of micronutrients such as iron, manganese and zinc.


Asunto(s)
Moléculas de Patrón Molecular Asociado a Patógenos , Salmón , Animales , Línea Celular , Lipopolisacáridos/farmacología , Macrófagos , Micronutrientes , Piscirickettsia
19.
Cell Death Differ ; 29(11): 2262-2274, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35585181

RESUMEN

Apoptosis is regulated by interactions between the BH3-only and multi-domain Bcl-2 family proteins. These interactions are integrated on the outer mitochondrial membrane (OMM) where they set the threshold for apoptosis, known as mitochondrial priming. However, how mitochondrial priming is controlled at the level of single cells remains unclear. Retrotranslocation of Bcl-XL has been proposed as one mechanism, removing pro-apoptotic Bcl-2 proteins from the OMM, thus reducing priming. Contrary to this view, we now show that Bcl-XL retrotranslocation is inhibited by binding to its BH3-only partners, resulting in accumulation of these protein complexes on mitochondria. We find that Bcl-XL retrotranslocation dynamics are tightly coupled to mitochondrial priming. Quantifying these dynamics indicates the heterogeneity in priming between cells within a population and predicts how they subsequently respond to a pro-apoptotic signal.


Asunto(s)
Mitocondrias , Proteínas Proto-Oncogénicas c-bcl-2 , Citosol/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Proteína bcl-X/metabolismo , Proteína X Asociada a bcl-2/metabolismo
20.
Rev Biol Trop ; 59(3): 1115-26, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22017118

RESUMEN

In Mexico and elsewhere in the Caribbean, the queen conch Strombus gigas is an endangered species. Understanding the genetic connectivity of their populations will support management strategies for long-term conservation of the species. Genetic diversity and population differentiation was assessed from samples collected at Banco Chinchorro and Isla Cozumel in the Mexican Caribbean and at Arrecife Alacranes in the Gulf of Mexico. Samples were obtained from the commercial capture at Banco Chinchorro (n = 50) and Isla Cozumel (n = 40) on March 2004. On November 2004, a non-invasive method for the Arrecife Alacranes sampling was applied, taking the hemolymph of live animals (n = 65) and releasing them to the wild. The mitochondrial DNA variation at two genes (COI and Cyt-b) was analyzed. Genetic diversity at the three locations ranged between 0.55-0.65 in COI and 0.87-0.94 in Cyt-b, showing no bottleneck evidences. A non-significant fixation index (F(ST) = 0.019, p = 0.161) and a Maximum Parsimony Network tree that did not show particular clades associated with any of the geographical locations, suggested a lack of statistically significant genetic differentiation among populations. Nevertheless, the cline patterns observed in both genetic diversity and haplotypic frequencies from Banco Chinchorro through Arrecife Alacranes, and the larger genetic distance between these locations from those between Isla Cozumel, Banco Chinchorro and Arrecife Alacranes, suggest the possibility of a pattern of isolation-by distance. The role of the main current systems over the potential genetic differences in S. gigas populations along the Mexican Caribbean, and the conservation management of S. gigas at these locations as discrete units is discussed.


Asunto(s)
Especies en Peligro de Extinción , Variación Genética , Caracoles/clasificación , Caracoles/genética , Animales , ADN Mitocondrial/genética , Geografía , Haplotipos , México , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA