Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Clin Immunol ; 264: 110261, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788884

RESUMEN

Gene regulatory elements, such as enhancers, greatly influence cell identity by tuning the transcriptional activity of specific cell types. Dynamics of enhancer landscape during early human Th17 cell differentiation remains incompletely understood. Leveraging ATAC-seq-based profiling of chromatin accessibility and comprehensive analysis of key histone marks, we identified a repertoire of enhancers that potentially exert control over the fate specification of Th17 cells. We found 23 SNPs associated with autoimmune diseases within Th17-enhancers that precisely overlapped with the binding sites of transcription factors actively engaged in T-cell functions. Among the Th17-specific enhancers, we identified an enhancer in the intron of RORA and demonstrated that this enhancer positively regulates RORA transcription. Moreover, CRISPR-Cas9-mediated deletion of a transcription factor binding site-rich region within the identified RORA enhancer confirmed its role in regulating RORA transcription. These findings provide insights into the potential mechanism by which the RORA enhancer orchestrates Th17 differentiation.


Asunto(s)
Diferenciación Celular , Elementos de Facilitación Genéticos , Células Th17 , Humanos , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Elementos de Facilitación Genéticos/genética , Células Th17/inmunología , Polimorfismo de Nucleótido Simple , Regulación de la Expresión Génica , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Sitios de Unión/genética , Sistemas CRISPR-Cas
2.
Nucleic Acids Res ; 50(9): 4938-4958, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35511484

RESUMEN

Th17 cells are essential for protection against extracellular pathogens, but their aberrant activity can cause autoimmunity. Molecular mechanisms that dictate Th17 cell-differentiation have been extensively studied using mouse models. However, species-specific differences underscore the need to validate these findings in human. Here, we characterized the human-specific roles of three AP-1 transcription factors, FOSL1, FOSL2 and BATF, during early stages of Th17 differentiation. Our results demonstrate that FOSL1 and FOSL2 co-repress Th17 fate-specification, whereas BATF promotes the Th17 lineage. Strikingly, FOSL1 was found to play different roles in human and mouse. Genome-wide binding analysis indicated that FOSL1, FOSL2 and BATF share occupancy over regulatory regions of genes involved in Th17 lineage commitment. These AP-1 factors also share their protein interacting partners, which suggests mechanisms for their functional interplay. Our study further reveals that the genomic binding sites of FOSL1, FOSL2 and BATF harbour hundreds of autoimmune disease-linked SNPs. We show that many of these SNPs alter the ability of these transcription factors to bind DNA. Our findings thus provide critical insights into AP-1-mediated regulation of human Th17-fate and associated pathologies.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Antígeno 2 Relacionado con Fos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Células Th17 , Factor de Transcripción AP-1 , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Diferenciación Celular , Antígeno 2 Relacionado con Fos/genética , Antígeno 2 Relacionado con Fos/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Células Th17/citología , Células Th17/metabolismo , Factor de Transcripción AP-1/metabolismo
3.
Heredity (Edinb) ; 126(4): 695-705, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33510465

RESUMEN

Organisms can plastically alter resource allocation in response to changing environmental factors. For example, in harsh conditions, organisms are expected to shift investment from reproduction toward survival; however, the factors and mechanisms that govern the magnitude of such shifts are relatively poorly studied. Here we compared the impact of cold on males and females of the highly cold-tolerant species Drosophila montana at the phenotypic and transcriptomic levels. Although both sexes showed similar changes in cold tolerance and gene expression in response to cold treatment, indicating that the majority of changes are concordant between the sexes, we identified a clear reduction in sexually dimorphic gene expression, suggesting that preparing for the colder season involves reducing investment in sex-specific traits. This reduction was larger in males than females, as expected if male sexual traits are more condition-dependent than female traits, as predicted by theory. Gene expression changes were primarily associated with shifts in metabolic profile, which likely play a role in increasing cold tolerance. Finally, we found that the expression of immune genes was reduced following cold treatment, suggesting that reduced investment in costly immune function may be important in helping flies survive colder periods.


Asunto(s)
Drosophila , Reproducción , Animales , Frío , Drosophila/genética , Femenino , Masculino , Fenotipo , Caracteres Sexuales , Transcriptoma
4.
Sci Rep ; 8(1): 7577, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29765071

RESUMEN

Alternative splicing, in which one gene produce multiple transcripts, may influence how adaptive genes respond to specific environments. A newly produced transcriptome of Drosophila montana shows the Gs1-like (Gs1l) gene to express multiple splice variants and to be down regulated in cold acclimated flies with increased cold tolerance. Gs1l's effect on cold tolerance was further tested by injecting cold acclimated and non-acclimated flies from two distantly located northern and southern fly populations with double stranded RNA (dsRNA) targeting Gs1l. While both populations had similar cold acclimation responses, dsRNA injections only effected the northern population. The nature of splicing expression was then investigated in the northern population by confirming which Gs1l variants are present, by comparing the expression of different gene regions and by predicting the protein structures of splices using homology modelling. We find different splices of Gs1l not only appear to have independent impacts on cold acclimation but also elicit different effects in populations originating from two very different environments. Also, at the protein level, Gs1l appears homologous to the human HDHD1A protein and some splices might produce functionally different proteins though this needs to be verified in future studies by measuring the particular protein levels. Taken together, Gs1l appears to be an interesting new candidate to test how splicing influences adaptations.


Asunto(s)
Empalme Alternativo/efectos de los fármacos , Proteínas de Drosophila/genética , Drosophila/fisiología , ARN Bicatenario/administración & dosificación , Aclimatación , Animales , Clima Frío , Proteínas de Drosophila/metabolismo , Humanos , Inyecciones/veterinaria , Nucleotidasas , Isoformas de Proteínas/metabolismo , Proteínas/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA