Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Res ; 186: 106546, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36336215

RESUMEN

Mucosal vaccination is regarded as a promising alternative to classical, intramuscular vaccine delivery. However, only a limited number of vaccines have been licensed for mucosal administration in humans. Here we propose Leishmania tarentolae, a protozoan parasite, as a potential antigen vehicle for mucosal vaccination, for administration via the rectal or oral routes. To test this hypothesis, we exploited L. tarentolae for the production and delivery of SARS-CoV-2 antigens. Two antigens were assayed in BALB/c mice: Lt-spike, a L. tarentolae clone engineered for the surface expression of the SARS-CoV-2 spike protein; RBD-SD1, a purified portion of the spike protein, produced by another engineered clone of the protozoon. Immune response parameters were then determined at different time points. Both antigens, administered either separately or in combination (Lt-spike + RBD-SD1, hereafter LeCoVax-2), determined significant IgG seroconversion and production of neutralizing antibodies after subcutaneous administration, but only in the presence of adjuvants. After rectal administration, the purified RBD-SD1 antigen did not induce any detectable immune response, in comparison with the intense response observed after administration of LeCoVax-2 or Lt-spike alone. In rectal administration, LeCoVax-2 was also effective when administered without adjuvant. Our results show that L. tarentolae is an efficient and safe scaffold for production and delivery of viral antigens, to be used as vaccines. In addition, rectal vaccination experiments prove that L. tarentolae is suitable as a vaccine vehicle and adjuvant for enteral vaccination. Finally, the combined preparation LeCoVax-2 can be considered as a promising candidate vaccine against SARS-CoV-2, worthy of further investigation.


Asunto(s)
COVID-19 , Parásitos , Ratones , Animales , Humanos , Vacunas contra la COVID-19 , COVID-19/prevención & control , Administración Rectal , SARS-CoV-2 , Vacunación/métodos , Ratones Endogámicos BALB C , Adyuvantes Inmunológicos , Inmunoglobulina G
2.
Soft Matter ; 18(34): 6443-6452, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35983789

RESUMEN

Biological methods for mosquito larvae control are completely biodegradable and have null or limited effects on nontarget organisms. However, commercially available products have a low residual activity, with the consequent need for multiple applications that inevitably increase costs and the risk of resistance phenomena insurgence. Smart delivery systems made of hydrogels proved their efficacy in increasing the action duration of biolarvicides up to several months, but the lack of an efficient baiting mechanism to strongly attract the target pest remains a problem in practical applications. In this work, we investigated two novel hydrogel-based formulations of completely natural composition for baiting and killing larvae of Aedes albopictus mosquitos. The proposed materials consist of charged crosslinked polysaccharides (chitosan and cellulose) and are specifically manufactured to float in water, simulating organic matter usually present at breeding sites. Within the hydrogels' matrix, yeast colonies of Saccharomyces cerevisiae were embedded as phagostimulants alongside a biolarvicide (Bacillus thuringiensis var. israelensis (Bti)). Despite the similar chemical nature and structure, chitosan-based hydrogels exhibited a markedly superior baiting potential compared to those made of cellulose and also succeeded in efficiently killing mosquito larvae just after a few hours from administration. We are confident that the proposed smart delivery hydrogel made of chitosan can be an enabling tool to attract mosquito larvae towards biopesticides of different nature without delocalizing active ingredients away from the breeding site and to simultaneously increase their residual activity, thus holding the potential of minimizing environmental pollution related to pest control and vector-borne disease prevention.


Asunto(s)
Aedes , Quitosano , Animales , Celulosa , Quitosano/farmacología , Hidrogeles/farmacología , Larva , Control de Mosquitos/métodos , Mosquitos Vectores , Control Biológico de Vectores/métodos
3.
Environ Microbiol ; 23(1): 36-50, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32686279

RESUMEN

Phytophagous stink bugs typically harbor nutritional symbiotic bacteria in their midgut, to integrate their unbalanced diet. In the Pentatomidae, most symbionts are affiliated to the genus Pantoea, and are polyphyletic. This suggests a scenario of an ancestral establishment of symbiosis, followed by multiple symbiont replacement events by akin environmental bacteria in different host lineages. In this study, a novel Pantoeaspecies ('CandidatusPantoea persica') was characterized from the gut of the pentatomid Acrosternum arabicum, and shown to be highly abundant in a specific portion of the gut and necessary for the host development. The genome of the symbiont (2.9 Mb), while presenting putative host-supportive metabolic pathways, including those for amino acids and vitamin synthesis, showed a high level of pseudogenization, indicating ongoing genome reduction. Comparative analyses with other free-living and symbiotic Pantoea highlighted a convergent pattern of genome reduction in symbionts of pentatomids, putatively following the typical phases modelized in obligate nutritional symbionts of insects. Additionally, this system has distinctive traits, as hosts are closely related, and symbionts originated multiple independent times from closely related free-living bacteria, displaying convergent and independent conspicuous genome reduction. Due to such peculiarities, this may become an ideal model to study genome evolutionary processes in insect symbionts.


Asunto(s)
Genoma Bacteriano , Heterópteros/microbiología , Pantoea/genética , Simbiosis , Animales , Evolución Molecular , Heterópteros/fisiología , Redes y Vías Metabólicas , Pantoea/clasificación , Pantoea/aislamiento & purificación , Pantoea/fisiología , Filogenia
4.
Pharmacol Res ; 159: 104962, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32480001

RESUMEN

This review tackles the concept of the evolutionary mismatch, in relation with the reduction of the prevalence of the so-called "dirty old friends". These formed the variegated community of parasites and microorganisms, either prokaryotic or eukaryotic, that, over long evolutionary times, co-evolved with humans and their ancestors, inhabiting their digestive tracts, and other body districts. This community of microbial symbionts and metazoan parasites is thought to have evolved a complex network of inter-independence with the host, in particular in relation with their immune stimulating capacity, and with the consequent adaptation of the host immune response to this chronic stimulation. Strictly related to this evolutionary mismatch, the hygiene hypothesis, proposed by David Strachan in 1989, foresees that the increase in the incidence of inflammatory and autoimmune disorders during the twentieth century has been caused by the reduced exposure to parasites and microorganisms, especially in industrialized countries. Among these pathologies, inflammatory bowel diseases (IBDs) occupy a prominent role. From these premises, this review summarizes current knowledge on how variations in the composition of the gut bacterial microbiota, as well as its interactions with fungal communities, influence the overall immune balance, favouring or counteracting gut inflammation in IBDs. Additionally, the effect of worm parasites, either directly on the immune balance, or indirectly, through the modulation of bacterial and fungal microbiota, will be addressed. Finally, we will review a series of studies related to the use of molecules derived from parasitic worms and fungi, which hold the potential to be developed as postbiotics for the treatment of IBDs.


Asunto(s)
Hongos/patogenicidad , Hipótesis de la Higiene , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/parasitología , Intestinos/microbiología , Intestinos/parasitología , Parásitos/patogenicidad , Animales , Evolución Biológica , Hongos/inmunología , Microbioma Gastrointestinal , Interacciones Huésped-Parásitos , Humanos , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/terapia , Intestinos/inmunología , Parásitos/inmunología , Factores de Riesgo
5.
Pharmacol Res ; 161: 105288, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33160070

RESUMEN

Leishmaniases are severe vector-borne diseases affecting humans and animals, caused by Leishmania protozoans. Over one billion people and millions of dogs live in endemic areas for leishmaniases and are at risk of infection. Immune polarization plays a major role in determining the outcome of Leishmania infections: hosts displaying M1-polarized macrophages are protected, while those biased on the M2 side acquire a chronic infection that could develop into a deadly disease. The identification of the factors involved in M1 polarization is essential for the design of therapeutic and prophylactic interventions, including vaccines. Infection by the filarial nematode Dirofilaria immitis could be one of the factors that interfere with leishmaniasis in dogs. Indeed, filarial nematodes induce a partial skew of the immune response towards M1, likely caused by their bacterial endosymbionts, Wolbachia. Here we have examined the potential of AsaiaWSP, a bacterium engineered for the expression of the Wolbachia surface protein (WSP), as an inductor of M1 macrophage activation and Leishmania killing. Macrophages stimulated with AsaiaWSP displayed a strong leishmanicidal activity, comparable to that determined by the choice-drug amphotericin B. Additionally, AsaiaWSP determined the expression of markers of classical macrophage activation, including M1 cytokines, ROS and NO, and an increase in phagocytosis activity. Asaia not expressing WSP also induced macrophage activation, although at a lower extent compared to AsaiaWSP. In summary, the results of the present study confirm the immunostimulating properties of WSP highlighting a potential therapeutic efficacy against Leishmania parasites. Furthermore, Asaia was designed as a delivery system for WSP, thus developing a novel type of immunomodulating agent, worthy of being investigated for immuno-prophylaxis and -therapy of leishmaniases and other diseases that could be subverted by M1 macrophage activation.


Asunto(s)
Acetobacteraceae/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Inmunidad Innata , Leishmania infantum/inmunología , Vacunas contra la Leishmaniasis/inmunología , Activación de Macrófagos , Macrófagos/microbiología , Macrófagos/parasitología , Acetobacteraceae/genética , Acetobacteraceae/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Línea Celular , Citocinas/metabolismo , Vectores Genéticos , Interacciones Huésped-Parásitos , Leishmania infantum/crecimiento & desarrollo , Leishmania infantum/ultraestructura , Vacunas contra la Leishmaniasis/genética , Vacunas contra la Leishmaniasis/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Óxido Nítrico/metabolismo , Fagocitosis , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Vacunas de ADN/inmunología
6.
Malar J ; 18(1): 294, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31462239

RESUMEN

BACKGROUND: Insecticides are still at the core of insect pest and vector control programmes. Several lines of evidence indicate that ABC transporters are involved in detoxification processes against insecticides, including permethrin and other pyrethroids. In particular, the ABCG4 gene, a member of the G subfamily, has consistently been shown to be up-regulated in response to insecticide treatments in the mosquito malaria vector Anopheles stephensi (both adults and larvae). METHODS: To verify the actual involvement of this transmembrane protein in the detoxification process of permethrin, bioassays on larvae of An. stephensi, combining the insecticide with a siRNA, specifically designed for the inhibition of ABCG4 gene expression were performed. Administration to larvae of the same siRNA, labeled with a fluorescent molecule, was effected to investigate the systemic distribution of the inhibitory RNA into the larval bodies. Based on siRNA results, similar experiments using antisense Vivo-Morpholinos (Vivo-MOs) were effected. These molecules, compared to siRNA, are expected to guarantee a higher stability in environmental conditions and in the insect gut, and present thus a higher potential for future in-field applications. RESULTS: Bioassays using two different concentrations of siRNA, associated with permethrin, led to an increase of larval mortality, compared with results with permethrin alone. These outcomes confirm that ABCG4 transporter plays a role in the detoxification process against the selected insecticide. Moreover, after fluorescent labelling, it was shown the systemic dissemination of siRNA in different body districts of An. stephensi larvae, which suggest a potential systemic effect of the molecule. At the same time, results of Vivo-MO experiments were congruent with those obtained using siRNA, thus confirming the potential of ABCG4 inhibition as a strategy to increase permethrin susceptibility in mosquitoes. For the first time, Vivo-MOs were administered in water to larvae, with evidence for a biological effect. CONCLUSIONS: Targeting ABCG4 gene for silencing through both techniques resulted in an increased pyrethroid efficacy. These results open the way toward the possibility to exploit ABCG4 inhibition in the context of integrated programmes for the control An. stephensi mosquitoes and malaria transmission.


Asunto(s)
Anopheles/genética , Resistencia a los Insecticidas/genética , Insecticidas , Morfolinos/administración & dosificación , Piretrinas , ARN sin Sentido/genética , Transportador de Casetes de Unión a ATP, Subfamilia G/genética , Animales , Bioensayo , Larva/genética , Malaria/prevención & control , Morfolinos/genética , Control de Mosquitos , Mosquitos Vectores , Interferencia de ARN , ARN Interferente Pequeño
7.
Environ Microbiol ; 20(3): 1064-1077, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29345102

RESUMEN

The knowledge of the fungal mycobiota of arthropods, including the vectors of human and animal diseases, is still limited. Here, the mycobiota associated with the sand fly Phlebotomus perniciosus, the main vector of leishmaniasis in the western Mediterranean area, by a culture-dependent approach (microbiological analyses and sequencing of the 26S rRNA gene), internal transcribed spacer (ITS) rRNA amplicon-based next-generation sequencing, fluorescence in situ hybridisation (FISH), and genome sequencing of the dominant yeast species was investigated. The dominant species was Meyerozyma guilliermondii, known for its biotechnological applications. The focus was on this yeast and its prevalence in adults, pupae and larvae of reared sand flies (overall prevalence: 57.5%) and of field-collected individuals (overall prevalence: 9%) was investigated. Using whole-mount FISH and microscopic examination, it was further showed that M. guilliermondii colonizes the midgut of females, males and larvae and the distal part of Malpighian tubules of female sand flies, suggesting a possible role in urate degradation. Finally, the sequencing and analysis of the genome of M. guilliermondii allowed predicting the complete uric acid degradation pathway, suggesting that the yeast could contribute to the removal of the excess of nitrogenous wastes after the blood meal of the insect host.


Asunto(s)
Phlebotomus/microbiología , Saccharomycetales/genética , Saccharomycetales/metabolismo , Simbiosis/fisiología , Ácido Úrico/metabolismo , Animales , Femenino , Genoma Fúngico/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hibridación Fluorescente in Situ , Insectos Vectores , Larva/microbiología , Masculino , Túbulos de Malpighi/microbiología , Microbiota/genética , ARN Ribosómico/genética , Saccharomycetales/aislamiento & purificación
8.
Mol Cell Probes ; 31: 85-90, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-26921517

RESUMEN

Rhipicephalus sanguineus sensu lato (Ixodida: Ixodidae) is possibly the most widespread tick species worldwide, responsible for transmitting several vector-borne pathogens of medical and veterinary importance. Here, we explore the transcriptome of R. sanguineus s.l. larvae (Putignano strain). We sequenced total RNA from R. sanguineus s.l. larvae. A total of 15,566,986 short paired-end reads were de novo-assembled into 33,396 transcripts and then annotated and analyzed. Particular attention was paid to transcripts putatively encoding ATP-binding proteins, due to their importance as mechanisms of detoxification and acaricide resistance. Additionally, microsatellite loci were investigated, as these are useful markers for population genetic studies. The present data and analyses provide a comprehensive transcriptomic resource for R. sanguineus. The results presented here will aid further genetic and genomic studies of this important tick species.


Asunto(s)
Rhipicephalus sanguineus/genética , Transcriptoma/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Perros , Ontología de Genes , Sitios Genéticos , Larva/genética , Repeticiones de Microsatélite/genética , Anotación de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN
9.
Exp Appl Acarol ; 72(1): 69-77, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28536802

RESUMEN

Argas vespertilionis is a geographically widespread haematophagous ectoparasite species of bats in the Old World, with a suspected role in the transmission of Babesia vesperuginis. The aims of the present study were (1) to molecularly screen A. vespertilionis larvae (collected in Europe, Africa and Asia) for the presence of piroplasms, and (2) to analyze mitochondrial markers of A. vespertilionis larvae from Central Asia (Xinjiang Province, Northwestern China) in a phylogeographical context. Out of the 193 DNA extracts from 321 A. vespertilionis larvae, 12 contained piroplasm DNA (10 from Hungary, two from China). Sequencing showed the exclusive presence of B. vesperuginis, with 100% sequence identity between samples from Hungary and China. In addition, A. vespertilionis cytochrome oxidase c subunit 1 (cox1) and 16S rRNA gene sequences had 99.1-99.2 and 99.5-100% similarities, respectively, between Hungary and China. Accordingly, in the phylogenetic analyses A. vespertilionis from China clustered with haplotypes from Europe, and (with high support) outside the group formed by haplotypes from Southeast Asia. This is the first molecular evidence on the occurrence of B. vesperuginis in Asia. Bat ticks from hosts in Vespertilionidae contained only the DNA of B. vesperuginis (in contrast with what was reported on bat ticks from Rhinolophidae and Miniopteridae). Molecular taxonomic analyses of A. vespertilionis and B. vesperuginis suggest a genetic link of bat parasites between Central Europe and Central Asia, which is epidemiologically relevant in the context of any pathogens associated with bats.


Asunto(s)
Argas/genética , Babesia/genética , Quirópteros/parasitología , Filogenia , Animales , Asia , Europa (Continente) , ARN Ribosómico 16S/química
10.
Malar J ; 15: 21, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26754943

RESUMEN

BACKGROUND: Malaria control strategies are focusing on new approaches, such as the symbiotic control, which consists in the use of microbial symbionts to prevent parasite development in the mosquito gut and to block the transmission of the infection to humans. Several microbes, bacteria and fungi, have been proposed for malaria or other mosquito-borne diseases control strategies. Among these, the yeast Wickerhamomyces anomalus has been recently isolated from the gut of Anopheles mosquitoes, where it releases a natural antimicrobial toxin. Interestingly, many environmental strains of W. anomalus exert a wide anti-bacterial/fungal activity and some of these 'killer' yeasts are already used in industrial applications as food and feed bio-preservation agents. Since a few studies showed that W. anomalus killer strains have antimicrobial effects also against protozoan parasites, the possible anti-plasmodial activity of the yeast was investigated. METHODS: A yeast killer toxin (KT), purified through combined chromatographic techniques from a W. anomalus strain isolated from the malaria vector Anopheles stephensi, was tested as an effector molecule to target the sporogonic stages of the rodent malaria parasite Plasmodium berghei, in vitro. Giemsa staining was used to detect morphological damages in zygotes/ookinetes after treatment with the KT. Furthermore, the possible mechanism of action of the KT was investigated pre-incubating the protein with castanospermine, an inhibitor of ß-glucanase activity. RESULTS: A strong anti-plasmodial effect was observed when the P. berghei sporogonic stages were treated with KT, obtaining an inhibition percentage up to around 90%. Microscopy analysis revealed several ookinete alterations at morphological and structural level, suggesting the direct implication of the KT-enzymatic activity. Moreover, evidences of the reduction of KT activity upon treatment with castanospermine propose a ß-glucanase-mediated activity. CONCLUSION: The results showed the in vitro killing efficacy of a protein produced by a mosquito strain of W. anomalus against malaria parasites. Further studies are required to test the KT activity against the sporogonic stages in vivo, nevertheless this work opens new perspectives for the possible use of killer strains in innovative strategies to impede the development of the malaria parasite in mosquito vectors by the means of microbial symbionts.


Asunto(s)
Anopheles/microbiología , Malaria/parasitología , Saccharomycetales/metabolismo , Saccharomycetales/fisiología , Toxinas Biológicas/metabolismo , Toxinas Biológicas/fisiología , Animales , Ratones Endogámicos BALB C , Plasmodium berghei/patogenicidad , Simbiosis
11.
Parasitol Res ; 115(1): 307-12, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26374536

RESUMEN

The aim of this study was to examine helminths and protozoans in cynomolgus macaques (Macaca fascicularis) imported from registered breeding facilities in China and their relation to health risks for non-human primate handlers in biomedical research centers and in breeding facilities. Fresh fecal samples were collected from a total of 443 M. fascicularis and analyzed by copromicroscopical analysis, immunoenzymatic, or molecular assays. As to helminths, whose eggs were shed in 2.03% of the samples, Trichuris and Oesophagostomum were the only two taxa found, with low prevalence and low eggs per gram (EPG) values. Protozoans were more frequently detected (87.40%), with Entamoeba coli (85.19%) and Endolimax nana (79.26%) as the most prevalent species shed. Other parasites found by fecal smear examination were uninucleated-cyst-producing Entamoebas (78.52%), Iodamoeba bütschlii (42.96%), and Chilomastix mesnili (24.44%), while cysts of Balantidium coli (22.2%) were only observed by sedimentation. No coproantigens of Giardia duodenalis, Cryptosporidium spp., and Entamoeba histolytica complex were detected. Blastocystis sp. infection was noticed in 87.63% of macaques by PCR. These cynomolgus monkeys were infected with many subtypes (ST1, ST2, ST3, ST5, and ST7), where the predominant Blastocystis sp. subtypes were ST2 (77.5%), followed by ST1 (63.5%). Data collected confirmed the presence of potentially zoonotic parasites and a high parasite diversity, suggesting the need for appropriate and sensitive techniques to adequately control them and related health risks for handlers of non-human primates in biomedical research centers and in breeding facilities.


Asunto(s)
Helmintiasis Animal/parasitología , Parasitosis Intestinales/veterinaria , Macaca fascicularis/parasitología , Enfermedades de los Monos/parasitología , Infecciones Protozoarias en Animales/parasitología , Amebiasis/epidemiología , Amebiasis/parasitología , Amebiasis/veterinaria , Animales , Blastocystis/clasificación , Blastocystis/genética , Blastocystis/aislamiento & purificación , Infecciones por Blastocystis/epidemiología , Infecciones por Blastocystis/parasitología , Infecciones por Blastocystis/veterinaria , China/epidemiología , Endolimax/aislamiento & purificación , Entamoeba/clasificación , Entamebiasis/epidemiología , Entamebiasis/parasitología , Entamebiasis/veterinaria , Heces/parasitología , Técnicas de Genotipaje , Helmintiasis Animal/epidemiología , Humanos , Parasitosis Intestinales/epidemiología , Parasitosis Intestinales/parasitología , Esofagostomiasis/parasitología , Esofagostomiasis/veterinaria , Oesophagostomum/aislamiento & purificación , Prevalencia , Infecciones Protozoarias en Animales/epidemiología , Tricuriasis/parasitología , Tricuriasis/veterinaria , Trichuris/aislamiento & purificación
12.
Antimicrob Agents Chemother ; 59(1): 389-96, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25367909

RESUMEN

Klebsiella pneumoniae is at the forefront of antimicrobial resistance for Gram-negative pathogenic bacteria, as strains resistant to third-generation cephalosporins and carbapenems are widely reported. The worldwide diffusion of these strains is of great concern due to the high morbidity and mortality often associated with K. pneumoniae infections in nosocomial environments. We sequenced the genomes of 89 K. pneumoniae strains isolated in six Italian hospitals. Strains were selected based on antibiotypes, regardless of multilocus sequence type, to obtain a picture of the epidemiology of K. pneumoniae in Italy. Thirty-one strains were carbapenem-resistant K. pneumoniae carbapenemase producers, 29 were resistant to third-generation cephalosporins, and 29 were susceptible to the aforementioned antibiotics. The genomes were compared to all of the sequences available in the databases, obtaining a data set of 319 genomes spanning the known diversity of K. pneumoniae worldwide. Bioinformatic analyses of this global data set allowed us to construct a whole-species phylogeny, to detect patterns of antibiotic resistance distribution, and to date the differentiation between specific clades of interest. Finally, we detected an ∼ 1.3-Mb recombination that characterizes all of the isolates of clonal complex 258, the most widespread carbapenem-resistant group of K. pneumoniae. The evolution of this complex was modeled, dating the newly detected and the previously reported recombination events. The present study contributes to the understanding of K. pneumoniae evolution, providing novel insights into its global genomic characteristics and drawing a dated epidemiological scenario for this pathogen in Italy.


Asunto(s)
Antibacterianos/uso terapéutico , Carbapenémicos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/genética , Técnicas de Tipificación Bacteriana , Secuencia de Bases , Infección Hospitalaria/microbiología , ADN Bacteriano/genética , Evolución Molecular , Humanos , Italia/epidemiología , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/clasificación , Klebsiella pneumoniae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , beta-Lactamasas/genética
13.
New Microbiol ; 38(4): 577-81, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26485017

RESUMEN

The yeast Wickerhamomyces anomalus has been proposed for many biotechnological applications in the food industry. However, a number of opportunistic pathogenic strains have been reported as causative agents of nosocomial fungemia. Recognition of potentially pathogenic isolates is an important challenge for the future commercialization of this yeast. The isolation of W. anomalus from different matrices and, recently, from mosquitoes, requires further investigations into its circulation in humans. Here we present a qPCR protocol for the detection of W. anomalus in human blood samples and the results of a screening of 525 donors, including different classes of patients and healthy people.


Asunto(s)
Sangre/microbiología , Micosis/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Saccharomycetales/aislamiento & purificación , Humanos , Micosis/sangre , Saccharomycetales/clasificación , Saccharomycetales/genética
14.
J Insect Sci ; 14: 147, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25368078

RESUMEN

Sawflies are important pests of various plant species. Diprion pini (L.) and Neodiprion sertifer (Geoffroy) (Hymenoptera: Diprionidae) are two of the most important sawfly pests in Italy, and both species are parasitized by the hymenopteran parasitoid Dahlbominus fuscipennis (Zetterstedt). Bacterial endosymbionts are currently studied for their high potential in strategies of biocontrol in a number of insect species. In this study, we investigated the presence of symbiotic bacteria (Wolbachia and Cardinium) in the three species of hymenoptera mentioned earlier, both in wild and laboratory populations. Although all samples were negative for the presence of Cardinium, 100% prevalence for Wolbachia was detected, as all examined individuals resulted to be PCR positive. Furthermore, 16S rDNA and ftsZ gene sequencing indicated that all individuals from the three hymenopteran species are infected by a single Wolbachia strain. Additionally, we report the presence of gynandromorphic individuals in D. pini, both in wild and laboratory-reared populations. Heat treatments on D. pini colonies removed the Wolbachia symbionts, but they also prevented the development of adults.


Asunto(s)
Himenópteros/microbiología , Himenópteros/fisiología , Wolbachia/aislamiento & purificación , Animales , ADN Bacteriano/genética , ADN Ribosómico/genética , Femenino , Calor , Himenópteros/anatomía & histología , Italia , Masculino , Mosaicismo , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Caracteres Sexuales , Simbiosis , Wolbachia/genética
15.
Front Immunol ; 15: 1298275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707903

RESUMEN

Background: Innate immune responses against infectious agents can act as triggers of inflammatory diseases. On the other hand, various pathogens have developed mechanisms for the evasion of the immune response, based on an inhibition of innate immunity and inflammatory responses. Inflammatory diseases could thus be controlled through the administration of pathogens or pathogen-derived molecules, capable of interfering with the mechanisms at the basis of inflammation. In this framework, the NLRP3 inflammasome is an important component in innate antimicrobial responses and a major player in the inflammatory disease. Parasites of the genus Leishmania are master manipulators of innate immune mechanisms, and different species have been shown to inhibit inflammasome formation. However, the exploitation of pathogenic Leishmania species as blockers of NLRP3-based inflammatory diseases poses safety concerns. Methods: To circumvent safety issues associated with pathogenic parasites, we focused on Leishmania tarentolae, a species of Leishmania that is not infectious to humans. Because NLRP3 typically develops in macrophages, in response to the detection and engulfment microorganisms, we performed our experiments on a monocyte-macrophage cell line (THP-1), either wild type or knockout for ASC, a key component of NLRP3 formation, with determination of cytokines and other markers of inflammation. Results: L. tarentolae was shown to possess the capability of dampening the formation of NLRP3 inflammasome and the consequent expression of pro-inflammatory molecules, with minor differences compared to effects of pathogenic Leishmania species. Conclusion: The non-pathogenic L. tarentolae appears a promising pro-biotic microbe with anti-inflammatory properties or a source of immune modulating cellular fractions or molecules, capable of interfering with the formation of the NLRP3 inflammasome.


Asunto(s)
Inflamasomas , Inflamación , Leishmania , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Humanos , Inflamasomas/metabolismo , Inflamasomas/inmunología , Leishmania/inmunología , Inflamación/inmunología , Células THP-1 , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/parasitología , Inmunidad Innata , Citocinas/metabolismo
16.
Sci Rep ; 14(1): 9562, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671070

RESUMEN

The development of media for cell culture is a major issue in the biopharmaceutical industry, for the production of therapeutics, immune-modulating molecules and protein antigens. Chemically defined media offer several advantages, as they are free of animal-derived components and guarantee high purity and a consistency in their composition. Microorganisms of the genus Leishmania represent a promising cellular platform for production of recombinant proteins, but their maintenance requires supplements of animal origin, such as hemin and fetal bovine serum. In the present study, three chemically defined media were assayed for culturing Leishmania tarentolae, using both a wild-type strain and a strain engineered to produce a viral antigen. Among the three media, Schneider's Drosophila Medium supplemented with Horseradish Peroxidase proved to be effective for the maintenance of L. tarentolae promastigotes, also allowing the heterologous protein production by the engineered strain. Finally, the engineered strain was maintained in culture up to the 12th week without antibiotic, revealing its capability to produce the recombinant protein in the absence of selective pressure.


Asunto(s)
Medios de Cultivo , Leishmania , Proteínas Recombinantes , Leishmania/genética , Leishmania/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Medios de Cultivo/química , Biotecnología/métodos , Técnicas de Cultivo de Célula/métodos , Animales
17.
Front Immunol ; 15: 1323406, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476234

RESUMEN

Both viral infection and vaccination affect the antibody repertoire of a person. Here, we demonstrate that the analysis of serum antibodies generates information not only on the virus type that caused the infection but also on the specific virus variant. We developed a rapid multiplex assay providing a fingerprint of serum antibodies against five different SARS-CoV-2 variants based on a microarray of virus antigens immobilized on the surface of a label-free reflectometric biosensor. We analyzed serum from the plasma of convalescent subjects and vaccinated volunteers and extracted individual antibody profiles of both total immunoglobulin Ig and IgA fractions. We found that Ig level profiles were strongly correlated with the specific variant of infection or vaccination and that vaccinated subjects displayed a larger quantity of total Ig and a lower fraction of IgA relative to the population of convalescent unvaccinated subjects.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Inmunoglobulinas , Inmunoglobulina A
18.
Environ Microbiol ; 15(3): 822-36, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22830931

RESUMEN

Arbuscular mycorrhizal fungi (AMF) can host Gram-positive endobacteria (BLOs) in their cytoplasm. These have been identified as Mollicutes-related microbes based on an inventory of AMF spores from fungal collections. Bacteria-like organisms (BLOs) of unknown identity have also been reported in the cytoplasm of AMF associated with liverworts, the earliest-diverged extant lineage of land plants. A combination of morphological, molecular and phylogenetic analyses revealed that three samples of two liverwort species (Conocephalum conicum and Lunularia cruciata) growing spontaneously in a botanical garden harboured AMF belonging to Glomerales, and these, in turn, hosted coccoid BLOs. 16S rDNA sequences from these BLOs clustered with the Mollicutes sequences identified from the spore collections but revealed the presence of novel phylotypes. Electron microscopy and fluorescence in situ hybridization (FISH) confirmed the presence of BLOs inside the cytoplasm of AMF hyphae colonizing the liverwort thalli. The high genetic variability of BLOs in liverwort-AMF associations thriving in the same ecological niche raises questions about the mechanisms underlying such diversity.


Asunto(s)
Glomeromycota/fisiología , Hepatophyta/microbiología , Micorrizas/fisiología , Tenericutes/fisiología , Glomeromycota/clasificación , Glomeromycota/genética , Glomeromycota/ultraestructura , Hepatophyta/ultraestructura , Hifa/ultraestructura , Hibridación Fluorescente in Situ , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Micorrizas/clasificación , Micorrizas/genética , Micorrizas/ultraestructura , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Tenericutes/clasificación , Tenericutes/genética
19.
Appl Environ Microbiol ; 79(10): 3241-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23503305

RESUMEN

"Candidatus Midichloria mitochondrii" is an intramitochondrial bacterium of the order Rickettsiales associated with the sheep tick Ixodes ricinus. Bacteria phylogenetically related to "Ca. Midichloria mitochondrii" (midichloria and like organisms [MALOs]) have been shown to be associated with a wide range of hosts, from amoebae to a variety of animals, including humans. Despite numerous studies focused on specific members of the MALO group, no comprehensive phylogenetic and statistical analyses have so far been performed on the group as a whole. Here, we present a multidisciplinary investigation based on 16S rRNA gene sequences using both phylogenetic and statistical methods, thereby analyzing MALOs in the overall framework of the Rickettsiales. This study revealed that (i) MALOs form a monophyletic group; (ii) the MALO group is structured into distinct subgroups, verifying current genera as significant evolutionary units and identifying several subclades that could represent novel genera; (iii) the MALO group ranks at the level of described Rickettsiales families, leading to the proposal of the novel family "Candidatus Midichloriaceae." In addition, based on the phylogenetic trees generated, we present an evolutionary scenario to interpret the distribution and life history transitions of these microorganisms associated with highly divergent eukaryotic hosts: we suggest that aquatic/environmental protista have acted as evolutionary reservoirs for members of this novel family, from which one or more lineages with the capacity of infecting metazoa have evolved.


Asunto(s)
Alphaproteobacteria/clasificación , Filogenia , Rickettsiaceae/clasificación , Alphaproteobacteria/genética , Animales , Teorema de Bayes , Ecosistema , Evolución Molecular , Genes Bacterianos , Genes de ARNr , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Rickettsiaceae/genética , Garrapatas/microbiología
20.
Mol Ecol ; 22(6): 1666-82, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23398505

RESUMEN

In the last few years, improved analytical tools and the integration of genetic data with multiple sources of information have shown that temperate species exhibited more complex responses to ice ages than previously thought. In this study, we investigated how Pleistocene climatic changes affected the current distribution and genetic diversity of European populations of the tick Ixodes ricinus, an ectoparasite with high ecological plasticity. We first used mitochondrial and nuclear genetic markers to investigate the phylogeographic structure of the species and its Pleistocene history using coalescent-based methods; then we used species distribution modelling to infer the climatic niche of the species at last glacial maximum; finally, we reviewed the literature on the I. ricinus hosts to identify the locations of their glacial refugia. Our results support the scenario that during the last glacial phase, I. ricinus never experienced a prolonged allopatric divergence in separate glacial refugia, but persisted with interconnected populations across Southern and Central Europe. The generalist behaviour in host choice of I. ricinus would have played a major role in maintaining connections between its populations. Although most of the hosts persisted in separate refugia, from the point of view of I. ricinus, they represented a continuity of 'bridges' among populations. Our study highlights the importance of species-specific ecology in affecting responses to Pleistocene glacial-interglacial cycles. Together with other cases in Europe and elsewhere, it contributes to setting new hypotheses on how species with wide ecological plasticity coped with Pleistocene climatic changes.


Asunto(s)
Cambio Climático , Evolución Molecular , Variación Genética , Ixodes/genética , Animales , Teorema de Bayes , Núcleo Celular/genética , ADN Mitocondrial/genética , Europa (Continente) , Haplotipos , Modelos Genéticos , Filogeografía , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA