RESUMEN
BACKGROUND AND AIMS: Increasing data suggest that stress-related neural activity (SNA) is associated with subsequent major adverse cardiovascular events (MACE) and may represent a therapeutic target. Current evidence is exclusively based on populations from the U.S. and Asia where limited information about cardiovascular disease risk was available. This study sought to investigate whether SNA imaging has clinical value in a well-characterized cohort of cardiovascular patients in Europe. METHODS: In this single-centre study, a total of 963 patients (mean age 58.4 ± 16.1 years, 40.7% female) with known cardiovascular status, ranging from 'at-risk' to manifest disease, and without active cancer underwent 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography between 1 January 2005 and 31 August 2019. Stress-related neural activity was assessed with validated methods and relations between SNA and MACE (non-fatal stroke, non-fatal myocardial infarction, coronary revascularization, and cardiovascular death) or all-cause mortality by time-to-event analysis. RESULTS: Over a maximum follow-up of 17 years, 118 individuals (12.3%) experienced MACE, and 270 (28.0%) died. In univariate analyses, SNA significantly correlated with an increased risk of MACE (sub-distribution hazard ratio 1.52, 95% CI 1.05-2.19; P = .026) or death (hazard ratio 2.49, 95% CI 1.96-3.17; P < .001). In multivariable analyses, the association between SNA imaging and MACE was lost when details of the cardiovascular status were added to the models. Conversely, the relationship between SNA imaging and all-cause mortality persisted after multivariable adjustments. CONCLUSIONS: In a European patient cohort where cardiovascular status is known, SNA imaging is a robust and independent predictor of all-cause mortality, but its prognostic value for MACE is less evident. Further studies should define specific patient populations that might profit from SNA imaging.
Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Femenino , Masculino , Persona de Mediana Edad , Pronóstico , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Anciano , Europa (Continente)/epidemiología , Enfermedades Cardiovasculares/mortalidad , Encéfalo/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Radiofármacos , Corazón/diagnóstico por imagenRESUMEN
PURPOSE: Amygdalar metabolic activity was shown to independently predict cardiovascular outcomes. However, little is known about age- and sex-dependent variability in neuronal stress responses among individuals free of cardiac disease. This study sought to assess age- and sex-specific differences of resting amygdalar metabolic activity in the absence of clinical cardiovascular disease. METHODS: Amygdalar metabolic activity was assessed in 563 patients who underwent multimodality imaging by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography and echocardiography for the evaluation of cardiac function. RESULTS: After exclusion of 294 patients with structural or functional cardiovascular pathologies, 269 patients (128 women) remained in the final population. 18F-FDG amygdalar activity significantly decreased with age in men (r = - 0.278, P = 0.001), but not in women (r = 0.002, P = 0.983). Similarly, dichotomous analysis confirmed a lower amygdalar activity in men ≥ 50 years as compared to those < 50 years of age (0.79 ± 0.1 vs. 0.84 ± 0.1, P = 0.007), which was not observed in women (0.81 ± 0.1 vs. 0.82 ± 0.1, P = 0.549). Accordingly, a fully adjusted linear regression analysis identified age as an independent predictor of amygdalar activity only in men (B-coefficient - 0.278, P = 0.001). CONCLUSION: Amygdalar activity decreases with age in men, but not in women. The use of amygdalar activity for cardiovascular risk stratification merits consideration of inherent age- and sex-dependent variability.
Asunto(s)
Amígdala del Cerebelo/metabolismo , Enfermedades Cardiovasculares/etiología , Adulto , Factores de Edad , Anciano , Amígdala del Cerebelo/diagnóstico por imagen , Femenino , Fluorodesoxiglucosa F18 , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Caracteres SexualesRESUMEN
Background: Necrotizing soft tissue infections (NSTIs) are often caused by group A Streptococcus (GAS). As the number of invasive GAS infections decreased during the coronavirus disease 2019 (COVID-19) pandemic restrictions, this study aimed to compare the occurrence of GAS-NSTIs before, during, and after the COVID-19 pandemic restrictions. Methods: This retrospective cohort study included adult patients with NSTIs admitted to the intensive care unit (ICU) of the University Hospital Zurich, Switzerland, from July 2008 to December 2023. NSTI cases were categorized as pre-, during, and postrestrictions. The primary outcome was the proportion of GAS in NSTI, and the exploratory secondary outcome was in-hospital death. A data analysis was conducted using Firth logistic regression adjusted for age, sex, diabetes, and initially affected body region. Results: Overall, 74 NSTI cases were identified, with 49 occurring before, 8 during, and 17 after the pandemic restrictions. GAS was isolated in 27 (36%) cases, with 17 (35%) pre- and 10 (59%) postrestrictions, but none during the restrictions. NSTIs caused by other bacteria persisted during the restrictions. The odds of GAS were significantly lower during the restrictions (adjusted odds ratio, 0.02; 95% CI, 0.001-0.81) compared with after, while no significant differences were found between the pre- and postrestriction periods. Conclusions: The significant decrease of GAS-NSTIs during the COVID-19 pandemic restrictions suggests that isolation measures may have prevented the transmission of GAS, resulting in a decline of GAS-NSTIs while NSTIs caused by bacteria transmitted by alternative routes persisted.
RESUMEN
BACKGROUND: Recent studies indicate that enhanced neuronal stress responses are associated with adverse cardiovascular outcomes. A chronic inflammatory state seems to mediate this detrimental neuro-cardiac communication. Statins are among the most widely prescribed medications in primary and secondary cardiovascular disease (CVD) prevention and not only lower lipid levels but also exhibit strong anti-inflammatory and neuroprotective effects. We therefore sought to investigate the influence of statins on neuronal stress responses in a patient cohort at risk for CVD. METHODS: 563 patients (61.5 ± 14.0 years) who underwent echocardiography and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) were retrospectively identified. Metabolic activity of the amygdala, a part of the brain's salience network, was quantified by 18F-FDG uptake, while normal cardiac morphology and function were assured by echocardiography. Vertebral bone marrow metabolism, a marker of inflammatory activity, was measured by 18F-FDG PET. RESULTS: Increased neuronal stress responses were associated with an increased inflammatory activity in the bone marrow (r = 0.152, p = 0.015) as well as with a subclinical reduction in left ventricular ejection fraction (LVEF, r = -0.138, p = 0.025). In a fully-adjusted linear regression model, statin treatment was identified as an independent, negative predictor of amygdalar metabolic activity (B-coefficient -0.171, p = 0.043). CONCLUSIONS: Our hypothesis-generating investigation suggests a potential link between the anti-inflammatory actions of statins and reduced neuronal stress responses which could lead to improved cardiovascular outcomes. The latter warrants further studies in a larger and prospective population.