Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
ACS Omega ; 8(26): 23733-23738, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37426274

RESUMEN

Clean water is essential for maintaining human health. To ensure clean water, it is important to use sensitive detection methods that can identify contaminants in real time. Most techniques do not rely on optical properties and require calibrating the system for each level of contamination. Therefore, we suggest a new technique to measure water contamination using the full scattering profile, which is the angular intensity distribution. From this, we extracted the iso-pathlength (IPL) point which minimizes the effects of scattering. The IPL point is an angle where the intensity values remain constant for different scattering coefficients while the absorption coefficient is set. The absorption coefficient does not affect the IPL point but only attenuates its intensity. In this paper, we show the appearance of the IPL in single scattering regimes for small concentrations of Intralipid. We extracted a unique point for each sample diameter wherein light intensity remained constant. The results describe a linear dependency between the angular position of the IPL point and the sample diameter. In addition, we show that the IPL point separates the absorption from the scattering, which allows the absorption coefficient to be extracted. Eventually, we present how we used the IPL point to detect the contamination levels of Intralipid and India ink in concentrations of 30-46 and 0-4 ppm, respectively. These findings suggest that the IPL point is an intrinsic parameter of a system that can be used as an absolute calibration point. This method provides a new and efficient way of measuring and differentiating between various types of contaminants in water.

2.
PLoS One ; 18(5): e0283047, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37163498

RESUMEN

Breast cancer is the second leading cause of cancer-related deaths in women and triple-negative breast cancer (TNBC), in particular, is an aggressive and highly metastatic type of breast cancer that does not respond to established targeted therapies and is associated with poor prognosis and worse survival. Previous studies identified a subgroup of triple-negative breast cancer patients with high expression of estrogen related receptor alpha (ERRα) that has better prognosis when treated with tamoxifen. We therefore set out to identify common targets of tamoxifen and ERRα in the context of TNBC using phosphoproteomic analysis. In this study, we discovered that phosphorylation of mitogen-activated protein kinase 1 (MAPK1) is regulated by tamoxifen as well as ERRα. Additionally, we showed that inhibition of MAPK signaling together with the use of a selective ERRα inverse agonist, XCT-790, leads to a significant upregulation of apoptosis and paves way for the therapeutic use of MAPK inhibitors for treatment of ERRα expressing TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/patología , Agonismo Inverso de Drogas , Receptores de Estrógenos/metabolismo , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Receptor Relacionado con Estrógeno ERRalfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA