Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(14): 2732-2746.e5, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38981483

RESUMEN

Metabolic enzymes can adapt during energy stress, but the consequences of these adaptations remain understudied. Here, we discovered that hexokinase 1 (HK1), a key glycolytic enzyme, forms rings around mitochondria during energy stress. These HK1-rings constrict mitochondria at contact sites with the endoplasmic reticulum (ER) and mitochondrial dynamics protein (MiD51). HK1-rings prevent mitochondrial fission by displacing the dynamin-related protein 1 (Drp1) from mitochondrial fission factor (Mff) and mitochondrial fission 1 protein (Fis1). The disassembly of HK1-rings during energy restoration correlated with mitochondrial fission. Mechanistically, we identified that the lack of ATP and glucose-6-phosphate (G6P) promotes the formation of HK1-rings. Mutations that affect the formation of HK1-rings showed that HK1-rings rewire cellular metabolism toward increased TCA cycle activity. Our findings highlight that HK1 is an energy stress sensor that regulates the shape, connectivity, and metabolic activity of mitochondria. Thus, the formation of HK1-rings may affect mitochondrial function in energy-stress-related pathologies.


Asunto(s)
Dinaminas , Metabolismo Energético , Hexoquinasa , Mitocondrias , Dinámicas Mitocondriales , Proteínas Mitocondriales , Hexoquinasa/metabolismo , Hexoquinasa/genética , Humanos , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/enzimología , Dinaminas/metabolismo , Dinaminas/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Animales , Adenosina Trifosfato/metabolismo , Estrés Fisiológico , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ciclo del Ácido Cítrico , Glucosa-6-Fosfato/metabolismo , Ratones , Células HeLa , Células HEK293 , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Mutación
2.
Annu Rev Pharmacol Toxicol ; 62: 551-571, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34530645

RESUMEN

Chemogenetics refers to experimental systems that dynamically regulate the activity of a recombinant protein by providing or withholding the protein's specific biochemical stimulus. Chemogenetic tools permit precise dynamic control of specific signaling molecules to delineate the roles of those molecules in physiology and disease. Yeast d-amino acid oxidase (DAAO) enables chemogenetic manipulation of intracellular redox balance by generating hydrogen peroxide only in the presence of d-amino acids. Advances in biosensors have allowed the precise quantitation of these signaling molecules. The combination of chemogenetic approaches with biosensor methodologies has opened up new lines of investigation, allowing the analysis of intracellular redox pathways that modulate physiological and pathological cell responses. We anticipate that newly developed transgenic chemogenetic models will permit dynamic modulation of cellularredox balance in diverse cells and tissues and will facilitate the identification and validation of novel therapeutic targets involved in both physiological redox pathways and pathological oxidative stress.


Asunto(s)
Peróxido de Hidrógeno , Estrés Oxidativo , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Oxidación-Reducción , Transducción de Señal
3.
J Am Chem Soc ; 145(22): 11899-11902, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37222194

RESUMEN

Chemogenetic Operation of iNTRacellular prOton Levels (pH-Control) is a novel substrate-based enzymatic method that enables precise spatiotemporal control of ultralocal acidification in cultured cell lines and primary neurons. The genetically encoded biosensor SypHer3s showed that pH-Control effectively acidifies cytosolic, mitochondrial, and nuclear pH exclusively in the presence of ß-chloro-d-alanine in living cells in a concentration-dependent manner. The pH-Control approach is promising for investigating the ultralocal pH imbalance associated with many diseases.


Asunto(s)
Protones , Concentración de Iones de Hidrógeno , Línea Celular , Homeostasis , Citosol/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 42(9): 1169-1185, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35924558

RESUMEN

BACKGROUND: Endothelial dysfunction is a critical component in the pathogenesis of cardiovascular diseases and is closely associated with nitric oxide (NO) levels and oxidative stress. Here, we report on novel findings linking endothelial expression of CD70 (also known as CD27 ligand) with alterations in NO and reactive oxygen species. METHODS: CD70 expression was genetically manipulated in human aortic and pulmonary artery endothelial cells. Intracellular NO and hydrogen peroxide (H2O2) were measured using genetically encoded biosensors, and cellular phenotypes were assessed. RESULTS: An unbiased phenome-wide association study demonstrated that polymorphisms in CD70 associate with vascular phenotypes. Endothelial cells treated with CD70-directed short-interfering RNA demonstrated impaired wound closure, decreased agonist-stimulated NO levels, and reduced eNOS (endothelial nitric oxide synthase) protein. These changes were accompanied by reduced NO bioactivity, increased 3-nitrotyrosine levels, and a decrease in the eNOS binding partner heat shock protein 90. Following treatment with the thioredoxin inhibitor auranofin or with agonist histamine, intracellular H2O2 levels increased up to 80% in the cytosol, plasmalemmal caveolae, and mitochondria. There was increased expression of NADPH oxidase 1 complex and gp91phox; expression of copper/zinc and manganese superoxide dismutases was also elevated. CD70 knockdown reduced levels of the H2O2 scavenger catalase; by contrast, glutathione peroxidase 1 expression and activity were increased. CD70 overexpression enhanced endothelial wound closure, increased NO levels, and attenuated the reduction in eNOS mRNA induced by TNFα. CONCLUSIONS: Taken together, these data establish CD70 as a novel regulatory protein in endothelial NO and reactive oxygen species homeostasis, with implications for human vascular disease.


Asunto(s)
Ligando CD27 , Células Endoteliales , Óxido Nítrico , Ligando CD27/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 322(3): H451-H465, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35089810

RESUMEN

The failing heart is characterized by elevated levels of reactive oxygen species. We have developed an animal model of heart failure induced by chemogenetic production of oxidative stress in the heart using a recombinant adeno-associated virus (AAV9) expressing yeast d-amino acid oxidase (DAAO) targeted to cardiac myocytes. When DAAO-infected animals are fed the DAAO substrate d-alanine, the enzyme generates hydrogen peroxide (H2O2) in the cardiac myocytes, leading to dilated cardiomyopathy. However, the underlying mechanisms of oxidative stress-induced heart failure remain incompletely understood. Therefore, we investigated the effects of chronic oxidative stress on the cardiac transcriptome and metabolome. Rats infected with recombinant cardiotropic AAV9 expressing DAAO or control AAV9 were treated for 7 wk with d-alanine to stimulate chemogenetic H2O2 production by DAAO and generate dilated cardiomyopathy. After hemodynamic assessment, left and right ventricular tissues were processed for RNA sequencing and metabolomic profiling. DAAO-induced dilated cardiomyopathy was characterized by marked changes in the cardiac transcriptome and metabolome both in the left and right ventricle. Downregulated transcripts are related to energy metabolism and mitochondrial function, accompanied by striking alterations in metabolites involved in cardiac energetics, redox homeostasis, and amino acid metabolism. Upregulated transcripts are involved in cytoskeletal organization and extracellular matrix. Finally, we noted increased metabolite levels of antioxidants glutathione and ascorbate. These findings provide evidence that chemogenetic generation of oxidative stress leads to a robust heart failure model with distinct transcriptomic and metabolomic signatures and set the basis for understanding the underlying pathophysiology of chronic oxidative stress in the heart.NEW & NOTEWORTHY We have developed a "chemogenetic" heart failure animal model that recapitulates a central feature of human heart failure: increased cardiac redox stress. We used a recombinant DAAO enzyme to generate H2O2 in cardiomyocytes, leading to cardiomyopathy. Here we report striking changes in the cardiac metabolome and transcriptome following chemogenetic heart failure, similar to changes observed in human heart failure. Our findings help validate chemogenetic approaches for the discovery of novel therapeutic targets in heart failure.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Alanina/farmacología , Aminoácidos/metabolismo , Aminoácidos/farmacología , Aminoácidos/uso terapéutico , Animales , Cardiomiopatía Dilatada/metabolismo , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Peróxido de Hidrógeno/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Ratas , Transcriptoma
6.
Biochem Soc Trans ; 50(1): 335-345, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35015078

RESUMEN

Chemogenetic tools are recombinant enzymes that can be targeted to specific organelles and tissues. The provision or removal of the enzyme substrate permits control of its biochemical activities. Yeast-derived enzyme D-amino acid oxidase (DAAO) represents the first of its kind for a substrate-based chemogenetic approach to modulate H2O2 concentrations within cells. Combining these powerful enzymes with multiparametric imaging methods exploiting genetically encoded biosensors has opened new lines of investigations in life sciences. In recent years, the chemogenetic DAAO approach has proven beneficial to establish a new role for (patho)physiological oxidative stress on redox-dependent signaling and metabolic pathways in cultured cells and animal model systems. This mini-review covers established or emerging methods and assesses newer approaches exploiting chemogenetic tools combined with genetically encoded biosensors.


Asunto(s)
Técnicas Biosensibles , Peróxido de Hidrógeno , Animales , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 116(40): 20210-20217, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527268

RESUMEN

Nitric oxide (NO) synthesized by the endothelial isoform of nitric oxide synthase (eNOS) is a critical determinant of vascular homeostasis. However, the real-time detection of intracellular NO-a free radical gas-has been difficult, and surrogate markers for eNOS activation are widely utilized. eNOS phosphorylation can be easily measured in cells by probing immunoblots with phosphospecific antibodies. Here, we pursued multispectral imaging approaches using biosensors to visualize intracellular NO and Ca2+ and exploited chemogenetic approaches to define the relationships between NO synthesis and eNOS phosphorylation in cultured endothelial cells. We found that the G protein-coupled receptor agonists adenosine triphosphate (ATP) and histamine promoted rapid increases in eNOS phosphorylation, as did the receptor tyrosine kinase agonists insulin and Vascular Endothelial Growth Factor (VEGF). Histamine and ATP also promoted robust NO formation and increased intracellular Ca2+ By contrast, neither insulin nor VEGF caused any increase whatsoever in intracellular NO or Ca2+-despite eliciting strong eNOS phosphorylation responses. Our findings demonstrate an unexpected and striking discordance between receptor-modulated eNOS phosphorylation and NO formation in endothelial cells. Previous reports in which phosphorylation of eNOS has been studied as a surrogate for enzyme activation may need to be reassessed.


Asunto(s)
Técnicas Biosensibles , Imagen Molecular , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Calcio/metabolismo , Células Cultivadas , Citosol , Células Endoteliales/metabolismo , Activación Enzimática , Imagen Molecular/métodos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal
8.
Am J Physiol Heart Circ Physiol ; 317(3): H617-H626, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31298558

RESUMEN

We previously described a novel "chemogenetic" animal model of heart failure that recapitulates a characteristic feature commonly found in human heart failure: chronic oxidative stress. This heart failure model uses a chemogenetic approach to activate a recombinant yeast d-amino acid oxidase in rat hearts in vivo to generate oxidative stress, which then rapidly leads to the development of a dilated cardiomyopathy. Here we apply this new model to drug testing by studying its response to treatment with the angiotensin II (ANG II) receptor blocker valsartan, administered either alone or with the neprilysin inhibitor sacubitril. Echocardiographic and [18F]fluorodeoxyglucose positron emission tomographic imaging revealed that valsartan in the presence or absence of sacubitril reverses the anatomical and metabolic remodeling induced by chronic oxidative stress. Markers of oxidative stress, mitochondrial function, and apoptosis, as well as classical heart failure biomarkers, also normalized following drug treatments despite the persistence of cardiac fibrosis. These findings provide evidence that chemogenetic heart failure is rapidly reversible by drug treatment, setting the stage for the study of novel heart failure therapeutics in this model. The ability of ANG II blockade and neprilysin inhibition to reverse heart failure induced by chronic oxidative stress identifies a central role for cardiac myocyte angiotensin receptors in the pathobiology of cardiac dysfunction caused by oxidative stress.NEW & NOTEWORTHY The chemogenetic approach allows us to distinguish cardiac myocyte-specific pathology from the pleiotropic changes that are characteristic of other "interventional" animal models of heart failure. These features of the chemogenetic heart failure model facilitate the analysis of drug effects on the progression and regression of ventricular remodeling, fibrosis, and dysfunctional signal transduction. Chemogenetic approaches will be highly informative in the study of the roles of redox stress in heart failure providing an opportunity for the identification of novel therapeutic targets.


Asunto(s)
Aminobutiratos/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Cardiomiopatía Dilatada/tratamiento farmacológico , D-Aminoácido Oxidasa/metabolismo , Proteínas Fúngicas/metabolismo , Peróxido de Hidrógeno/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Tetrazoles/farmacología , Animales , Apoptosis/efectos de los fármacos , Compuestos de Bifenilo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/fisiopatología , D-Aminoácido Oxidasa/genética , Dependovirus/genética , Modelos Animales de Enfermedad , Combinación de Medicamentos , Metabolismo Energético/efectos de los fármacos , Proteínas Fúngicas/genética , Vectores Genéticos/administración & dosificación , Inyecciones Intravenosas , Masculino , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Neprilisina/antagonistas & inhibidores , Regiones Promotoras Genéticas , Ratas Wistar , Troponina T/genética , Valsartán , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
9.
Mol Pharmacol ; 93(4): 335-343, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29358221

RESUMEN

According to current views, oxidation of aldehyde dehydrogenase-2 (ALDH2) during glyceryltrinitrate (GTN) biotransformation is essentially involved in vascular nitrate tolerance and explains the dependence of this reaction on added thiols. Using a novel fluorescent intracellular nitric oxide (NO) probe expressed in vascular smooth muscle cells (VSMCs), we observed ALDH2-catalyzed formation of NO from GTN in the presence of exogenously added dithiothreitol (DTT), whereas only a short burst of NO, corresponding to a single turnover of ALDH2, occurred in the absence of DTT. This short burst of NO associated with oxidation of the reactive C302 residue in the active site was followed by formation of low-nanomolar NO, even without added DTT, indicating slow recovery of ALDH2 activity by an endogenous reductant. In addition to the thiol-reversible oxidation of ALDH2, thiol-refractive inactivation was observed, particularly under high-turnover conditions. Organ bath experiments with rat aortas showed that relaxation by GTN lasted longer than that caused by the NO donor diethylamine/NONOate, in line with the long-lasting nanomolar NO generation from GTN observed in VSMCs. Our results suggest that an endogenous reductant with low efficiency allows sustained generation of GTN-derived NO in the low-nanomolar range that is sufficient for vascular relaxation. On a longer time scale, mechanism-based, thiol-refractive irreversible inactivation of ALDH2, and possibly depletion of the endogenous reductant, will render blood vessels tolerant to GTN. Accordingly, full reactivation of oxidized ALDH2 may not occur in vivo and may not be necessary to explain GTN-induced vasodilation.


Asunto(s)
Aldehído Deshidrogenasa Mitocondrial/metabolismo , Tolerancia a Medicamentos/fisiología , Músculo Liso Vascular/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitroglicerina/metabolismo , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/metabolismo , Línea Celular Transformada , Línea Celular Tumoral , Ditiotreitol/farmacología , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Nitratos/farmacología , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley
10.
J Biol Chem ; 291(46): 24076-24084, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27679490

RESUMEN

Aldehyde dehydrogenase-2 (ALDH2) catalyzes vascular bioactivation of the antianginal drug nitroglycerin (GTN), resulting in activation of soluble guanylate cyclase (sGC) and cGMP-mediated vasodilation. We have previously shown that a minor reaction of ALDH2-catalyzed GTN bioconversion, accounting for about 5% of the main clearance-based turnover yielding inorganic nitrite, results in direct NO formation and concluded that this minor pathway could provide the link between vascular GTN metabolism and activation of sGC. However, lack of detectable NO at therapeutically relevant GTN concentrations (≤1 µm) in vascular tissue called into question the biological significance of NO formation by purified ALDH2. We addressed this issue and used a novel, highly sensitive genetically encoded fluorescent NO probe (geNOp) to visualize intracellular NO formation at low GTN concentrations (≤1 µm) in cultured vascular smooth muscle cells (VSMC) expressing an ALDH2 mutant that reduces GTN to NO but lacks clearance-based GTN denitration activity. NO formation was compared with GTN-induced activation of sGC. The addition of 1 µm GTN to VSMC expressing either wild-type or C301S/C303S ALDH2 resulted in pronounced intracellular NO elevation, with maximal concentrations of 7 and 17 nm, respectively. Formation of GTN-derived NO correlated well with activation of purified sGC in VSMC lysates and cGMP accumulation in intact porcine aortic endothelial cells infected with wild-type or mutant ALDH2. Formation of NO and cGMP accumulation were inhibited by ALDH inhibitors chloral hydrate and daidzin. The present study demonstrates that ALDH2-catalyzed NO formation is necessary and sufficient for GTN bioactivation in VSMC.


Asunto(s)
Aldehído Deshidrogenasa Mitocondrial/metabolismo , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Óxido Nítrico/metabolismo , Nitroglicerina/farmacocinética , Aldehído Deshidrogenasa Mitocondrial/antagonistas & inhibidores , Aldehído Deshidrogenasa Mitocondrial/genética , Sustitución de Aminoácidos , Animales , Bovinos , Hidrato de Cloral/farmacología , Humanos , Isoflavonas/farmacología , Ratones , Ratones Noqueados , Mutación Missense , Nitroglicerina/farmacología , Porcinos
11.
Nat Chem Biol ; 16(6): 606-607, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32444837
12.
Nitric Oxide ; 70: 59-67, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28882669

RESUMEN

The members of the nitric oxide synthase (NOS) family, eNOS, nNOS and iNOS, are well-characterized enzymes. However, due to the lack of suitable direct NO sensors, little is known about the kinetic properties of cellular NO generation by the different nitric oxide synthase isoenzymes. Very recently, we developed a novel class of fluorescent protein-based NO-probes, the geNOps, which allow real-time measurement of cellular NO generation and fluctuation. By applying these genetic NO biosensors to nNOS-, eNOS- and iNOS-expressing HEK293 cells we were able to characterize the respective NO dynamics in single cells that exhibited identical Ca2+ signaling as comparable activator of nNOS and eNOS. Our data demonstrate that upon Ca2+ mobilization nNOS-derived NO signals occur instantly and strictly follow the Ca2+ elevation while NO release by eNOS occurs gradually and sustained. To detect high NO levels in cells expressing iNOS, a new ratiometric probe based on two fluorescent proteins was developed. This novel geNOp variant allows the measurement of the high NO levels in cells expressing iNOS. Moreover, we used this probe to study the L-arginine-dependency of NO generation by iNOS on the level of single cells. Our experiments highlight that the geNOps technology is suitable to detect obvious differences in the kinetics, amplitude and substrate-dependence of cellular NO signals-derived from all three nitric oxide synthase isoforms.


Asunto(s)
Óxido Nítrico Sintasa de Tipo III/análisis , Óxido Nítrico Sintasa de Tipo II/análisis , Óxido Nítrico Sintasa de Tipo I/análisis , Óxido Nítrico/biosíntesis , Arginina/metabolismo , Técnicas Biosensibles/instrumentación , Calcio/metabolismo , Colorantes Fluorescentes/química , Células HEK293/enzimología , Humanos , Isoenzimas , Cinética , Proteínas Luminiscentes/química , Microscopía Fluorescente , Óxido Nítrico/análisis , Óxido Nítrico/química
13.
Cell Physiol Biochem ; 39(4): 1404-20, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27606689

RESUMEN

BACKGROUND/AIMS: Resveratrol and its derivate piceatannol are known to induce cancer cell-specific cell death. While multiple mechanisms of actions have been described including the inhibition of ATP synthase, changes in mitochondrial membrane potential and ROS levels, the exact mechanisms of cancer specificity of these polyphenols remain unclear. This paper is designed to reveal the molecular basis of the cancer-specific initiation of cell death by resveratrol and piceatannol. METHODS: The two cancer cell lines EA.hy926 and HeLa, and somatic short-term cultured HUVEC were used. Cell viability and caspase 3/7 activity were tested. Mitochondrial, cytosolic and endoplasmic reticulum Ca2+ as well as cytosolic and mitochondrial ATP levels were measured using single cell fluorescence microscopy and respective genetically-encoded sensors. Mitochondria-ER junctions were analyzed applying super-resolution SIM and ImageJ-based image analysis. RESULTS: Resveratrol and piceatannol selectively trigger death in cancer but not somatic cells. Hence, these polyphenols strongly enhanced mitochondrial Ca2+ uptake in cancer exclusively. Resveratrol and piceatannol predominantly affect mitochondrial but not cytosolic ATP content that yields in a reduced SERCA activity. Decreased SERCA activity and the strongly enriched tethering of the ER and mitochondria in cancer cells result in an enhanced MCU/Letm1-dependent mitochondrial Ca2+ uptake upon intracellular Ca2+ release exclusively in cancer cells. Accordingly, resveratrol/piceatannol-induced cancer cell death could be prevented by siRNA-mediated knock-down of MCU and Letm1. CONCLUSIONS: Because their greatly enriched ER-mitochondria tethering, cancer cells are highly susceptible for resveratrol/piceatannol-induced reduction of SERCA activity to yield mitochondrial Ca2+ overload and subsequent cancer cell death.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Calcio/agonistas , Retículo Endoplásmico/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Estilbenos/farmacología , Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 7/genética , Caspasa 7/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Transporte Iónico/efectos de los fármacos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Especificidad de Órganos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Resveratrol , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
14.
Sensors (Basel) ; 15(6): 13052-68, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26053751

RESUMEN

Cameleons are sophisticated genetically encoded fluorescent probes that allow quantifying cellular Ca2+ signals. The probes are based on Förster resonance energy transfer (FRET) between terminally located fluorescent proteins (FPs), which move together upon binding of Ca2+ to the central calmodulin myosin light chain kinase M13 domain. Most of the available cameleons consist of cyan and yellow FPs (CFP and YFP) as the FRET pair. However, red-shifted versions with green and orange or red FPs (GFP, OFP, RFP) have some advantages such as less phototoxicity and minimal spectral overlay with autofluorescence of cells and fura-2, a prominent chemical Ca2+ indicator. While GFP/OFP- or GFP/RFP-based cameleons have been successfully used to study cytosolic and mitochondrial Ca2+ signals, red-shifted cameleons to visualize Ca2+ dynamics of the endoplasmic reticulum (ER) have not been developed so far. In this study, we generated and tested several ER targeted red-shifted cameleons. Our results show that GFP/OFP-based cameleons due to miss-targeting and their high Ca2+ binding affinity are inappropriate to record ER Ca2+ signals. However, ER targeted GFP/RFP-based probes were suitable to sense ER Ca2+ in a reliable manner. With this study we increased the palette of cameleons for visualizing Ca2+ dynamics within the main intracellular Ca2+ store.


Asunto(s)
Calcio/análisis , Calcio/química , Retículo Endoplásmico/química , Colorantes Fluorescentes/química , Proteínas Luminiscentes/química , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Luminiscentes/metabolismo , Microscopía Confocal
15.
ACS Sens ; 9(3): 1261-1271, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38293866

RESUMEN

When a cell sustains damage, it liberates cytosolic ATP, which can serve as an injury signal, affecting neighboring cells. This study presents a methodological approach that employs in vitro axotomy and in vivo laser ablation to simulate cellular injury. Specially tailored biosensors are employed to monitor ATP dynamics and calcium transients in injured cells and their surroundings. To simultaneously visualize extracellular and cytosolic ATP, we developed bicistronic constructs featuring GRABATP1.0 and MaLionR biosensors alongside the calcium sensor RCaMP, enabling multiparametric imaging. In addition to transducing primary neuron cultures, we developed another method where we cocultured dorsal root ganglion neurons together with specialized "sniffer" cell lines expressing the bicistronic biosensors. Exploiting these approaches, we successfully demonstrated the release of ATP from the injured neurons and its extracellular diffusion in response to cellular injury in vitro and in vivo. Axotomy triggered intracellular calcium mobilization not only in the injured neuron but also in the intact neighboring cells, providing new insights into ATP's role as an injury signal. The tools developed in this study have demonstrated remarkable efficiency in unraveling the intricacies of ATP-mediated injury signaling.


Asunto(s)
Técnicas Biosensibles , Calcio , Ratas , Animales , Calcio/metabolismo , Ratas Sprague-Dawley , Neuronas/metabolismo , Adenosina Trifosfato
16.
Free Radic Biol Med ; 221: 89-97, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38735541

RESUMEN

The complex interplay between hydrogen peroxide (H2O2) and nitric oxide (NO) in endothelial cells presents challenges due to technical limitations in simultaneous measurement, hindering the elucidation of their direct relationship. Previous studies have yielded conflicting findings regarding the impact of H2O2 on NO production. To address this problem, we employed genetically encoded biosensors, HyPer7 for H2O2 and geNOps for NO, allowing simultaneous imaging in single endothelial cells. Optimization strategies were implemented to enhance biosensor performance, including camera binning, temperature regulation, and environmental adjustments to mimic physiological normoxia. Our results demonstrate that under ambient oxygen conditions, H2O2 exhibited no significant influence on NO production. Subsequent exploration under physiological normoxia (5 kPa O2) revealed distinct oxidative stress levels characterized by reduced basal HyPer7 signals, enhanced H2O2 scavenging kinetics, and altered responses to pharmacological treatment. Investigation of the relationship between H2O2 and NO under varying oxygen conditions revealed a lack of NO response to H2O2 under hyperoxia (18 kPa O2) but a modest NO response under physiological normoxia (5 kPa O2). Importantly, the NO response was attenuated by l-NAME, suggesting activation of eNOS by endogenous H2O2 generation upon auranofin treatment. Our study highlights the intricate interplay between H2O2 and NO within the endothelial EA.hy926 cell line, emphasizing the necessity for additional research within physiological contexts due to differential response observed under physiological normoxia (5 kPa O2). This further investigation is essential for a comprehensive understanding of the H2O2 and NO signaling considering the physiological effects of ambient O2 levels involved.


Asunto(s)
Técnicas Biosensibles , Células Endoteliales , Peróxido de Hidrógeno , Óxido Nítrico Sintasa de Tipo III , Óxido Nítrico , Estrés Oxidativo , Oxígeno , Peróxido de Hidrógeno/metabolismo , Óxido Nítrico/metabolismo , Humanos , Oxígeno/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Técnicas Biosensibles/métodos , NG-Nitroarginina Metil Éster/farmacología
17.
Sci Rep ; 14(1): 13753, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877089

RESUMEN

Neuronal activity is accompanied by a net outflow of potassium ions (K+) from the intra- to the extracellular space. While extracellular [K+] changes during neuronal activity are well characterized, intracellular dynamics have been less well investigated due to lack of respective probes. In the current study we characterized the FRET-based K+ biosensor lc-LysM GEPII 1.0 for its capacity to measure intracellular [K+] changes in primary cultured neurons and in mouse cortical neurons in vivo. We found that lc-LysM GEPII 1.0 can resolve neuronal [K+] decreases in vitro during seizure-like and intense optogenetically evoked activity. [K+] changes during single action potentials could not be recorded. We confirmed these findings in vivo by expressing lc-LysM GEPII 1.0 in mouse cortical neurons and performing 2-photon fluorescence lifetime imaging. We observed an increase in the fluorescence lifetime of lc-LysM GEPII 1.0 during periinfarct depolarizations, which indicates a decrease in intracellular neuronal [K+]. Our findings suggest that lc-LysM GEPII 1.0 can be used to measure large changes in [K+] in neurons in vitro and in vivo but requires optimization to resolve smaller changes as observed during single action potentials.


Asunto(s)
Técnicas Biosensibles , Neuronas , Potasio , Animales , Potasio/metabolismo , Neuronas/metabolismo , Ratones , Técnicas Biosensibles/métodos , Potenciales de Acción , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia/métodos , Optogenética/métodos
18.
ACS Sens ; 9(9): 4680-4689, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39167044

RESUMEN

In this study, we introduce a new separation of phases-based activity reporter of kinase (SPARK) for AMP-activated kinase (AMPK), named AMPK-SPARK, which reports the AMPK activation by forming bright fluorescent clusters. Furthermore, we introduce a dual reporter system, named GCaMP-AMPK-SPARK, by incorporating a single-fluorescent protein (FP)-based Ca2+ biosensor, GCaMP6f, into our initial design, enabling simultaneous monitoring of Ca2+ levels and AMPK activity. This system offers the essential quality of information by single-channel fluorescence microscopy without the need for coexpression of different biosensors and elaborate filter layouts to overcome spectral limitations. We used AMPK-SPARK to map endogenous AMPK activity in different cell types and visualized the dynamics of AMPK activation in response to various stimuli. Using GCaMP-AMPK-SPARK, we revealed cell-to-cell heterogeneities in AMPK activation by Ca2+ mobilization. We anticipate that this dual reporter strategy can be employed to study the intricate interplays between different signaling networks and kinase activities.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Técnicas Biosensibles , Señalización del Calcio , Calcio , Proteínas Quinasas Activadas por AMP/metabolismo , Humanos , Calcio/metabolismo , Técnicas Biosensibles/métodos , Células HEK293 , Microscopía Fluorescente , Animales , Activación Enzimática
19.
iScience ; 26(10): 107715, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37701578

RESUMEN

Trauma, vascular events, or neurodegenerative processes can lead to axonal injury and eventual transection (axotomy). Neurons can survive axotomy, yet the underlying mechanisms are not fully understood. Excessive water entry into injured neurons poses a particular risk due to swelling and subsequent death. Using in vitro and in vivo neurotrauma model systems based on laser transection and surgical nerve cut, we demonstrated that axotomy triggers actomyosin contraction coupled with calpain activity. As a consequence, neurons shrink acutely to force water out through aquaporin channels preventing swelling and bursting. Inhibiting shrinkage increased the probability of neuronal cell death by about 3-fold. These studies reveal a previously unrecognized cytoprotective response mechanism to neurotrauma and offer a fresh perspective on pathophysiological processes in the nervous system.

20.
Biosensors (Basel) ; 12(10)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36291039

RESUMEN

Cellular iron supply is required for various biochemical processes. Measuring bioavailable iron in cells aids in obtaining a better understanding of its biochemical activities but is technically challenging. Existing techniques have several constraints that make precise localization difficult, and the lack of a functional readout makes it unclear whether the tested labile iron is available for metalloproteins. Here, we use geNOps; a ferrous iron-dependent genetically encoded fluorescent nitric oxide (NO) biosensor, to measure available iron in cellular locales. We exploited the nitrosylation-dependent fluorescence quenching of geNOps as a direct readout for cellular iron absorption, distribution, and availability. Our findings show that, in addition to ferrous iron salts, the complex of iron (III) with N,N'-bis (2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) can activate the iron (II)-dependent NO probe within intact cells. Cell treatment for only 20 min with iron sucrose was also sufficient to activate the biosensor in the cytosol and mitochondria significantly; however, ferric carboxymaltose failed to functionalize the probe, even after 2 h of cell treatment. Our findings show that the geNOps approach detects available iron (II) in cultured cells and can be applied to assay functional iron (II) at the (sub)cellular level.


Asunto(s)
Técnicas Biosensibles , Metaloproteínas , Hierro , Óxido Nítrico , Ácido Edético , Sacarato de Óxido Férrico , Sales (Química) , Etilenodiaminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA