Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 23(15): 9457-9465, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33885108

RESUMEN

We have recently demonstrated the use of contactless radiofrequency pulse sequences under dissolution-dynamic nuclear polarization conditions as an attractive way of transferring polarization from sensitive 1H spins to insensitive 13C spins with low peak radiofrequency pulse powers and energies via a reservoir of dipolar order. However, many factors remain to be investigated and optimized to enable the full potential of this polarization transfer process. We demonstrate herein the optimization of several key factors by: (i) implementing more efficient shaped radiofrequency pulses; (ii) adapting 13C spin labelling; and (iii) avoiding methyl group relaxation sinks. Experimental demonstrations are presented for the case of [1-13C]sodium acetate and other relevant molecular candidates. By employing the range of approaches set out above, polarization transfer using the dipolar order mediated cross-polarization radiofrequency pulse sequence is improved by factors approaching ∼1.65 compared with previous results. Dipolar order mediated 1H→13C polarization transfer efficiencies reaching ∼76% were achieved using significantly reduced peak radiofrequency pulse powers relative to the performance of highly sophisticated state-of-the-art cross-polarization methods, indicating 13C nuclear spin polarization levels on the order of ∼32.1% after 10 minutes of 1H DNP. The approach does not require extensive pulse sequence optimization procedures and can easily accommodate high concentrations of 13C-labelled molecules.

2.
Anal Chem ; 92(22): 14867-14871, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33136383

RESUMEN

Metabolomics plays a pivotal role in systems biology, and NMR is a central tool with high precision and exceptional resolution of chemical information. Most NMR metabolomic studies are based on 1H 1D spectroscopy, severely limited by peak overlap. 13C NMR benefits from a larger signal dispersion but is barely used in metabolomics due to ca. 6000-fold lower sensitivity. We introduce a new approach, based on hyperpolarized 13C NMR at natural abundance, that circumvents this limitation. A new untargeted NMR-based metabolomic workflow based on dissolution dynamic nuclear polarization (d-DNP) for the first time enabled hyperpolarized natural abundance 13C metabolomics. Statistical analysis of resulting hyperpolarized 13C data distinguishes two groups of plant (tomato) extracts and highlights biomarkers, in full agreement with previous results on the same biological model. We also optimize parameters of the semiautomated d-DNP system suitable for high-throughput studies.


Asunto(s)
Isótopos de Carbono/análisis , Espectroscopía de Resonancia Magnética , Metabolómica/métodos , Isótopos de Carbono/química
3.
J Chem Phys ; 145(19): 194203, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27875876

RESUMEN

We present novel means to hyperpolarize deuterium nuclei in 13CD2 groups at cryogenic temperatures. The method is based on cross-polarization from 1H to 13C and does not require any radio-frequency fields applied to the deuterium nuclei. After rapid dissolution, a new class of long-lived spin states can be detected indirectly by 13C NMR in solution. These long-lived states result from a sextet-triplet imbalance (STI) that involves the two equivalent deuterons with spin I = 1. An STI has similar properties as a triplet-singlet imbalance that can occur in systems with two equivalent I = 12 spins. Although the lifetimes TSTI are shorter than T1(Cz), they can exceed the life-time T1(Dz) of deuterium Zeeman magnetization by a factor of more than 20.

4.
Magn Reson (Gott) ; 3(2): 183-202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37904870

RESUMEN

NMR-based analysis of metabolite mixtures provides crucial information on biological systems but mostly relies on 1D 1H experiments for maximizing sensitivity. However, strong peak overlap of 1H spectra often is a limitation for the analysis of inherently complex biological mixtures. Dissolution dynamic nuclear polarization (d-DNP) improves NMR sensitivity by several orders of magnitude, which enables 13C NMR-based analysis of metabolites at natural abundance. We have recently demonstrated the successful introduction of d-DNP into a full untargeted metabolomics workflow applied to the study of plant metabolism. Here we describe the systematic optimization of d-DNP experimental settings for experiments at natural 13C abundance and show how the resolution, sensitivity, and ultimately the number of detectable signals improve as a result. We have systematically optimized the parameters involved (in a semi-automated prototype d-DNP system, from sample preparation to signal detection, aiming at providing an optimization guide for potential users of such a system, who may not be experts in instrumental development). The optimization procedure makes it possible to detect previously inaccessible protonated 13C signals of metabolites at natural abundance with at least 4 times improved line shape and a high repeatability compared to a previously reported d-DNP-enhanced untargeted metabolomic study. This extends the application scope of hyperpolarized 13C NMR at natural abundance and paves the way to a more general use of DNP-hyperpolarized NMR in metabolomics studies.

5.
Nat Commun ; 12(1): 4695, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349114

RESUMEN

Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) has enabled promising applications in spectroscopy and imaging, but remains poorly widespread due to experimental complexity. Broad democratization of dDNP could be realized by remote preparation and distribution of hyperpolarized samples from dedicated facilities. Here we show the synthesis of hyperpolarizing polymers (HYPOPs) that can generate radical- and contaminant-free hyperpolarized samples within minutes with lifetimes exceeding hours in the solid state. HYPOPs feature tunable macroporous porosity, with porous volumes up to 80% and concentration of nitroxide radicals grafted in the bulk matrix up to 285 µmol g-1. Analytes can be efficiently impregnated as aqueous/alcoholic solutions and hyperpolarized up to P(13C) = 25% within 8 min, through the combination of 1H spin diffusion and 1H → 13C cross polarization. Solutions of 13C-analytes of biological interest hyperpolarized in HYPOPs display a very long solid-state 13C relaxation times of 5.7 h at 3.8 K, thus prefiguring transportation over long distances.

6.
J Phys Condens Matter ; 25(11): 115601, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23406624

RESUMEN

Materials that exhibit colossal magnetoresistance (CMR) have attracted much attention due to their potential technological applications. One particularly interesting model for the magnetoresistance of low-carrier-density ferromagnets involves mediation by magnetic polarons (MP)-electrons localized in nanoscale ferromagnetic 'droplets' by their exchange interaction. However, MP have not previously been directly detected and their size has been difficult to determine from macroscopic measurements. In order to provide this crucial information, we have carried out muon spin rotation measurements on the magnetoresistive semiconductor Lu(2)V(2)O(7) in the temperature range from 2 to 300 K and in magnetic fields up to 7 T. Magnetic polarons with characteristic radius R ≈ 0.4 nm are detected below about 100 K, where Lu(2)V(2)O(7) exhibits CMR; at higher temperature, where the magnetoresistance vanishes, these MP also disappear. This observation confirms the MP-mediated model of CMR and reveals the microscopic size of the MP in magnetoresistive pyrochlores.

7.
Phys Rev Lett ; 101(2): 027202, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18764221

RESUMEN

Thin epitaxial films of the diluted magnetic semiconductor (DMS) GaMnAs have been studied by low energy muon spin rotation and relaxation (LE-microSR) as well as by transport and magnetization measurement techniques. LE-microSR allows measurements of the distribution of magnetic field on the nanometer scale inaccessible to traditional macroscopic techniques. The spatial inhomogeneity of the magnetic field is resolved: although homogeneous above Tc, below Tc the DMS consists of ferromagnetic and paramagnetic regions of comparable volumes. In the ferromagnetic regions the local field inhomogeneity amounts to 0.03 T.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA