Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 251(Pt 2): 118668, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38467359

RESUMEN

This study evaluated the potential effects of long-term land use and climate change on the quality of surface runoff and the health risks associated with it. The land use change projection 2030 was derived from the main changes in land use from 2009 to 2019, and rainfall data was obtained from the Long Ashton Research Station Weather Generator (LARS-WG) model. The Long-Term Hydrological Impact Assessment (L-THIA) model was then utilized to calculate the rate of runoff heavy metal (HM) pollutant loading from the urban catchment. It was found that areas with heavy development posed a significantly greater public health risk associated with runoff, with higher risks observed in high-development and traffic areas compared to industrial, residential, and commercial areas. Additionally, exposure to Lead (Pb), Mercury (Hg), and Arsenic (As) was found to contribute significantly to overall non-carcinogenic health risks for possible consumers of runoff. Carcinogenic risk values of As, Cadmium (Cd), and Pb were also observed to increase, particularly in high-development and traffic areas, by 2030. This investigation offers important insight into the health risks posed by metals present in surface runoff in urban catchment areas under different land use and climate change scenarios.


Asunto(s)
Exposición a Riesgos Ambientales , Metales Pesados , Contaminantes Químicos del Agua , Metales Pesados/análisis , Humanos , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Cambio Climático , Ciudades , Lluvia
2.
Environ Monit Assess ; 194(5): 336, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35389125

RESUMEN

Drought is one of the natural disasters that causes a great damage to human life and natural ecosystems. The main differences are in the gradual effect of drought over a relatively long period, impossibility of accurately determining time of the beginning and end of drought, and geographical extent of the associated effects. On the other hand, lack of a universally accepted definition of drought has added to the complexity of this phenomenon. In the last decade, due to increasing frequency of drought in Iran and reduction of water resources, its consequences have become apparent and have caused problems for planners and managers. So in this research, regional frequency analysis using L-moments methods was performed to investigate severity and duration of Standardized Precipitation Index (SPI), Standardized Evapotranspiration Index (SEI), Standardized Runoff Index (SRI), and Standardized Soil Moisture Index (SSI) and to study of meteorological, agricultural, and hydrological droughts in Karkheh River Basin in Iran. Using K-means clustering method, basin was divided into four homogeneous areas. Uncoordinated stations in each cluster were removed. The best regional distribution function was selected for each homogeneous region, and it was found that Pearson type (3) has the highest fit on the data set in the basin. Based on Hosking and Wallis heterogeneity test, Karkheh Basin with H1 < 1 was identified as acceptable homogeneous in all clusters. The results showed that hydrological drought occurs with a very short time delay in Karkheh River Basin after the meteorological drought, and two indicators show meteorological and hydrological drought conditions well. Agricultural drought occurs after meteorological and hydrological drought, respectively, and its severity and duration are less than the other indicators. Meteorological, hydrological, and agricultural droughts do not occur at the same time in all of the years. In general, the SPI drought index shows the most severe droughts compared with the other three indices. By this way, in 5- to 20-year return period with severity of 3SPI and in 20- to 100-year return period with severity of 7SPI, region IV or the western and northwestern areas of the basin has been affected by severe meteorological drought. By using the regional standardized quantities, it is possible to estimate the probability of drought in any part of the catchment that does not have sufficient data for hydrological studies.


Asunto(s)
Sequías , Ríos , Ecosistema , Monitoreo del Ambiente , Humanos , Irán
3.
Environ Monit Assess ; 191(10): 620, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31493149

RESUMEN

Groundwater aquifers have always been confronted with significant challenges around the world such as climate change, over-extraction, pollution by wastewaters, and saltwater intrusion in coastal areas. Prediction of groundwater level under the effects of climate change is more important in water resource management. This study has therefore been evaluated the effects of two climate parameters (i.e., precipitation and temperature) in groundwater level for the Shabestar Plain, Iran. For this end, four models from General Circulation Models (GCM) were then used to evaluate future climate change scenarios of the Representative Concentration Pathway (i.e., RCP2.6, RCP4.5, RCP8.5). In the next phase, to reduce the spatial complexity of observation wells, clustering analysis was used. In case of groundwater level modeling, time series in the base period, Least Square Support Vector Machine (LSSVM), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Nonlinear Autoregressive Network with Exogenous inputs (NARX) were also used. To improve the prediction accuracy, time series preprocessing made by wavelet-based de-noising approach was used. Analysis of the results illustrates an increase in temperature and a decrease in precipitation for study region in the future period times. The results also reveal that hybrid techniques of the wavelet-NARX give best results in comparison with the other models. A simulation result illustrates that the groundwater level declines in RCP2.6, 4.5, and 8.5, which gives average levels of 0.61, 0.81, and 1.53 m, respectively, for the future period years (i.e., 2020-2024). These results would lead to continuous groundwater depletion. These findings emphasize the necessity of the importance of extraction policies in water resource management.


Asunto(s)
Cambio Climático , Simulación por Computador , Conservación de los Recursos Hídricos/métodos , Monitoreo del Ambiente/métodos , Predicción/métodos , Agua Subterránea/análisis , Irán , Lluvia , Temperatura
4.
Water Sci Technol ; 76(3-4): 671-682, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28759449

RESUMEN

In this research, ostrich bone ash (OBA) was modified with nanoscale zerovalent iron (nZVI) particles and applied as a novel composite adsorbent (OBA/nZVI) for dynamic adsorption/reduction of Hg(II) and Pb(II) ions in a fixed-bed column system. Entrapment of nZVI in OBA beads barricades the particles from oxidation and aggregation. The dynamic behavior of metal ions removal by OBA/nZVI was assessed as a function of inlet flow rates, bed height, initial pollutants concentration and pH. The synthesized OBA/nZVI composite was characterized by several physicochemical techniques. Increase in pH and bed height and decrease in flow rates and initial metal concentration resulted in delay of breakthrough time. OBA breakthrough profile is sharper than the OBA/nZVI breakthrough curve for both metal ions and the breakthrough times increase in the order OBA/nZVI-Hg(II) > OBA/nZVI-Pb(II) > OBA-Pb(II) > OBA-Hg(II). Based on the experiment results, redox reaction is expected to occur to a certain extent, as the standard reduction potentials of Hg(II) and Pb(II) are more than that of Fe(II). From a practical point of view, the OBA/nZVI could be applied as a material to remove Hg(II) and Pb(II) ions from natural surface and ground water with a pH value of 5-9.


Asunto(s)
Hierro/química , Plomo/química , Mercurio/química , Minerales/química , Contaminantes Químicos del Agua/química , Adsorción , Animales , Agua Subterránea , Iones , Struthioniformes
5.
Sci Rep ; 13(1): 8211, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217575

RESUMEN

Groundwater assets are the foremost imperative assets of freshwater accessible to people especially in arid and semi-arid regions. For the investigation of temporal changes in groundwater nitrate pollution and the role of agriculture and other sources in the pollution of groundwater, the information on 42 drinking water wells with suitable distribution in the plain in Bouin-Daran Plain in the center of Iran was used. The results showed that the amount of hydraulic conductivity in the plain for different areas after calibration in steady state was calculated between 0.8 and 34 m/day. After calibrating the model in permanent conditions, the model was calibrated in non-permanent conditions for 2 years. The results showed that in a wide area of the region, the nitrate ion concentration has values of more than 25 mg/L. This shows that the average concentration of this ion in the region is generally high. The highest level of pollution in the aquifer of the plain is related to the southern and southeastern parts of the plain. Due to the agricultural activities with the use of large amounts of fertilizers in this plain, there is a potential for pollution in all of the places, and it requires codified and executive planning for agricultural operations as well as the use of groundwater sources. The DRASTIC vulnerability estimation method is only useful for estimating the areas that have a high potential for contamination and according to the validation tests, it has also provided a suitable estimate.

6.
Environ Sci Pollut Res Int ; 25(3): 2814-2829, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29143259

RESUMEN

In this research, a versatile and highly efficient method for the stabilization of nanoscale zerovalent iron particles (nZVI) on the surface of ostrich bone ash (OBA) was presented as a novel inorganic adsorbent (OBA/nZVI) for the removal of Hg(II) and Pb(II) ions from aqueous solutions, even after 1 year of storage under room conditions. The removal behavior of the OBA/nZVI was assessed as a function of the initial pH, contact time, initial pollutants concentration, temperature, amount of adsorbent, effect of competitive metal ions, and ionic strength. The synthesized adsorbent was characterized by several techniques including N2 adsorption at - 196 °C, FT-IR spectroscopy, scanning electron microscopy, X-ray diffraction, and zeta potential. The results confirmed that the OBA is a good candidate as support of nZVI. The maxima adsorption capacity for Hg(II) and Pb(II) ions found from experimental results were 170 and 160 mg g-1, when the loading quantities of Fe were 20%. The equilibrium sorption data obeyed a Langmuir-Freundlich isotherm type model. The kinetic data of the adsorption followed the mechanism of the pseudo-second-order model. The thermodynamic experiments indicated that the removal of metal ions were feasible, endothermic, and spontaneous. It can be found that fresh and aged OBA/nZVI maintained its usability even after five cycles in the order: fresh (OBA/nZVI)-Hg(II) > fresh (OBA/nZVI)-Pb(II) > aged (OBA/nZVI)-Hg(II) > aged (OBA/nZVI)-Pb(II), which indicate that OBA/nZVI can be regenerated as adsorbent. The existence of Fe in the OBA/nZVI was proved by SEM-EDX results and X-ray diffraction analysis also confirmed adsorption/reduction of some of the Hg(II) to Hg0 and Pb(II) to Pb0.


Asunto(s)
Hierro/química , Plomo/análisis , Mercurio/análisis , Minerales/química , Nanocompuestos/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Animales , Iones , Cinética , Modelos Teóricos , Struthioniformes , Termodinámica
7.
Sci Total Environ ; 442: 405-19, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23178843

RESUMEN

This study evaluates climate change impacts on crop production and water productivity of four major crops (wheat, barley, rice, and corn) in Iran's Zayandeh-Rud River Basin. Multi-model ensemble scenarios are used to deal with uncertainties in climate change projections for the study period (2015-2044). On average, monthly temperature will increase by 1.1 to 1.5°C under climate change. Monthly precipitation changes may be positive or negative in different months of the year. Nevertheless, on the annual basis, precipitation will decrease by 11 to 31% with climate change. While warming can potentially shorten the crop growth period, crop production and water productivity of all crops are expected to decrease due to lower precipitation and higher water requirements under higher temperature. Out of the four studied crops, rice and corn are more vulnerable to climate change due to their high irrigation water demand. So, their continued production can be compromised under climate change. This finding is of particular importance, given the locally high economic and food value of these crops in central Iran.


Asunto(s)
Cambio Climático , Productos Agrícolas/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Modelos Teóricos , Ríos , Abastecimiento de Agua/normas , Irán
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA