Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 28(37): 13172-80, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22866898

RESUMEN

Composite materials consisting of a monolayer of polystyrene spheres (diameters of 430 and 520 nm) and porous silica, filling in the interstices, have been fabricated and characterized. The proposed growth method introduces some novelties as far as the fabrication of this kind of monolayers is concerned, as it probes the compatibility of coassembly (in which a silica precursor, tetraethyl orthosilicate (TEOS), is added to the base colloid) with confined growth in a wedge-shaped cell, while profiting from the advantages of both techniques. Using this method, it is possible to fabricate the composite monolayer in a single growth step. A systematic study of the influence of TEOS concentration in the initial colloid was performed in order to improve the quality of the two-dimensional crystals produced. Thus, it was demonstrated that the two methods are compatible. Furthermore, the composites were then subjected to thermal treatment so that the polymer is removed to reveal the inverse structure. After the calcination the membranes still present very good quality and so the proposed approach is effective for the fabrication of porous membranes. A comparison of reflectance spectra, between composite monolayers fabricated using this method and composites achieved by infiltrating polystyrene bare opals with silica chemical vapor deposition, is also established. The procedure presented is expected to establish the route for an easier and quicker fabrication of inverse monolayers of high refractive index materials with applications in light control.


Asunto(s)
Poliestirenos/síntesis química , Dióxido de Silicio/química , Coloides/síntesis química , Coloides/química , Poliestirenos/química , Porosidad , Propiedades de Superficie
2.
Sci Rep ; 9(1): 3529, 2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837626

RESUMEN

Inspired by geometrically frustrated magnetic systems, we present the optical response of three cases of hexagonal lattices of plasmonic nanoelements. All of them were designed using a metal-insulator-metal configuration to enhance absorption of light, with elements in close proximity to exploit near-field coupling, and with triangular symmetry to induce frustration of the dipolar polarization in the gaps between neighboring structures. Both simulations and experimental results demonstrate that these systems behave as perfect absorbers in the visible and/or the near infrared. Besides, the numerical study of the time evolution shows that they exhibit a relatively extended time response over which the system fluctuates between localized and collective modes. It is of particular interest the echoed excitation of surface lattice resonance modes, which are still present at long times because of the geometric frustration inherent to the triangular lattice. It is worth noting that the excitation of collective modes is also enhanced in other types of arrays where dipolar excitations of the nanoelements are hampered by the symmetry of the array. However, we would like to emphasize that the enhancement in triangular arrays can be significantly larger because of the inherent geometric incompatibility of dipolar excitations and three-fold symmetry axes.

3.
Nat Photonics ; 12(6): 343-348, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29881447

RESUMEN

As contamination and environmental degradation increase nowadays, there is a huge demand for new eco-friendly materials. Despite its use for thousands of years, cellulose and its derivatives have gained renewed interest as favourable alternatives to conventional plastics, due to their abundance and lower environmental impact. We report the fabrication of photonic and plasmonic structures by moulding hydroxypropyl cellulose into sub-micrometric periodic lattices, using soft lithography. This is an alternative way to achieve structural colour in this material which is usually obtained exploiting its chiral nematic phase. Cellulose based photonic crystals are biocompatible and can be dissolved in water or not depending on the derivative employed. Patterned cellulose membranes exhibit tuneable colours and may be used to boost the photoluminescence of a host organic dye. Furthermore, we show how metal coating these cellulose photonic architectures leads to plasmonic crystals with excellent optical properties acting as disposable surface enhanced Raman spectroscopy substrates.

4.
ACS Appl Mater Interfaces ; 8(46): 31935-31940, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27786436

RESUMEN

Biopolymer-based composites enable to combine different functionalities using renewable materials and cost-effective routes. Here we fabricate novel thermoresponsive photonic films combining cellulose nanocrystals (CNCs) with a polydiolcitrate elastomer exhibiting shape memory properties, known as hydroxyl-dominant poly(dodecanediol-co-citrate) (PDDC-HD). Iridescent films of CNCs are first made by evaporation-induced self-assembly, then embedded in the PDDC-HD prepolymer, and finally cured to obtain a cross-linked composite with shape memory properties. The fabricated samples are characterized by polarized optical microscopy, scanning electron microscopy, and thermomechanical cycling. The obtained hybrid material combines both intense structural coloration and shape memory effect. The association of stiff cellulose nanocrystals and soft polydiolcitrate elastomer enhances the overall mechanical properties (increased modulus and reduced brittleness). This hybrid nanocomposite takes advantage of two promising materials and expands their possibilities to cover a wide range of potential applications as multiresponsive devices and sensors. As they perform from room to body temperatures, they could be also good candidates for biomedical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA