Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant J ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292868

RESUMEN

Saffron spice owes its commercial appreciation to its specific apocarotenoids: crocins, picrocrocin, and safranal. In Crocus sativus, these compounds are biosynthesized from zeaxanthin through oxidative cleavage by the carotenoid cleavage dioxygenase 2 (CCD2). Transgenic tomato plants expressing CsCCD2 in the fruit, named Tomaffron, accumulate high levels of saffron apocarotenoids despite the low substrate availability for CsCCD2. In the present study, CsCCD2 has been introduced into Xantomato; this tomato variety accumulates high levels of zeaxanthin and ß-carotene in ripe fruit due to a combination of four mutant alleles. Xantomato and Tomaffron genotypes have been combined to optimize apocarotenoid production. The best transgenic lines accumulated 15 and 14 times more crocins and picrocrocin than Tomaffron, alongside a fourfold increase in ß-carotene compared to Xantomato, albeit at a cost in fruit yield. Segregation of the four mutations has been carried out to find the best combination for obtaining high levels of saffron apocarotenoids without adverse effects on fruit yield. Plants harboring the high-pigmented 3 (hp3) and BETA (BSh) mutations accumulated 6 and 15 times more crocins and picrocrocin than Tomaffron, without observable pleiotropic effects. Additionally, those high levels of saffron apocarotenoids were obtained in fruit accumulating high levels of both lycopene and ß-carotene independently or in combination, suggesting a regulatory role for the apocarotenoids produced and indicating that it is possible to increase the levels of both types of healthy promoting molecules simultaneously.

2.
Am J Epidemiol ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160449

RESUMEN

We investigated the association between outdoor artificial light-at-night (ALAN) exposure and cardiometabolic risk in the GCAT study. We included 9,752 participants from Barcelona (59% women). We used satellite images (30m resolution) and estimated photopic illuminance and the circadian-regulation relevant melanopic illuminance (melanopic EDI). We explored the association between ALAN exposure and prevalent obesity, hypertension, and diabetes with logistic regressions. We assessed the relationship with incident cardiometabolic diseases ascertained through electronic health records (mean follow-up 6.5 years) with Cox proportional hazards regressions. We observed an association between photopic illuminance and melanopic EDI and prevalent hypertension, Odds ratio (OR) = 1.09 (95% CI, 1.01-1.16) and 1.08 (1.01-1.14) per interquartile range increase (0.59 and 0.16 lux, respectively). Both ALAN indicators were linked to incident obesity (hazard ratio [HR] = 1.29, 1.11-1.48 and 1.19, 1.05-1.34) and haemorrhagic stroke (HR = 1.73, 1.00-3.02 and 1.51, 0.99-2.29). Photopic illuminance was associated with incident hypercholesterolemia in all participants (HR = 1.17, 1.05-1.31) and with angina pectoris only in women (HR = 1.55, 1.03-2.33). Further research in this area and increased awareness on the health impacts of light pollution are needed. Results should be interpreted carefully since satellite-based ALAN data do not estimate total individual exposure.

3.
Development ; 148(16)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34351428

RESUMEN

Neocortical progenitor cells generate subtypes of excitatory projection neurons in sequential order followed by the generation of astrocytes. The transcription factor zinc finger and BTB domain-containing protein 20 (ZBTB20) has been implicated in regulation of cell specification during neocortical development. Here, we show that ZBTB20 instructs the generation of a subset of callosal projections neurons in cortical layers II/III in mouse. Conditional deletion of Zbtb20 in cortical progenitors, and to a lesser degree in differentiating neurons, leads to an increase in the number of layer IV neurons at the expense of layer II/III neurons. Astrogliogenesis is also affected in the mutants with an increase in the number of a specific subset of astrocytes expressing GFAP. Astrogliogenesis is more severely disrupted by a ZBTB20 protein containing dominant mutations linked to Primrose syndrome, suggesting that ZBTB20 acts in concert with other ZBTB proteins that were also affected by the dominant-negative protein to instruct astrogliogenesis. Overall, our data suggest that ZBTB20 acts both in progenitors and in postmitotic cells to regulate cell fate specification in the mammalian neocortex.


Asunto(s)
Astrocitos/metabolismo , Neocórtex/crecimiento & desarrollo , Neurogénesis/genética , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Anomalías Múltiples/genética , Animales , Calcinosis/genética , Enfermedades del Oído/genética , Femenino , Técnicas de Inactivación de Genes , Discapacidad Intelectual/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Atrofia Muscular/genética , Mutación Missense , Neocórtex/metabolismo , Transducción de Señal/genética , Células Madre/metabolismo , Factores de Transcripción/genética
4.
J Med Virol ; 96(9): e29862, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39247972

RESUMEN

Limited research suggests that certain viruses reactivate in severe-acute-respiratory-syndrome-coronavirus 2 infection, contributing to the development of postacute sequelae of COVID-19 (PASC). We examined 1083 infected individuals from a population-based cohort, and assessed differences in plasma immunoglobulin (Ig)G and immunoglobulin A levels against Epstein-Barr virus (EBV), cytomegalovirus, varicella zoster virus (VZV), BK polyomavirus, KI polyomavirus, WU polyomavirus (WUPyV), respiratory syncytial virus, and Adv-36 according to the severity of previous COVID-19 and PASC history. Individuals who had experienced severe COVID-19 had higher antibody responses to latent viruses. Ever PASC, active persistent PASC, and PASC with neuropsychiatric symptoms were associated with higher immnoglobulin G to EBV early antigen-diffuse, VZV, and WUPyV even among individuals without previous severe COVID-19.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Inmunoglobulina G , Humanos , COVID-19/inmunología , COVID-19/virología , Anticuerpos Antivirales/sangre , Masculino , Femenino , Persona de Mediana Edad , Inmunoglobulina G/sangre , Adulto , Índice de Severidad de la Enfermedad , Anciano , SARS-CoV-2/inmunología , Inmunoglobulina A/sangre , Formación de Anticuerpos , Síndrome Post Agudo de COVID-19 , Estudios de Cohortes
5.
Epidemiology ; 35(5): 710-720, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38935439

RESUMEN

BACKGROUND: Prenatal ethylene oxide exposure may have adverse effects on fetal development. We examined the relationships between ethylene oxide hemoglobin (Hb) adduct levels and offspring's size at birth in a prospective European mother-child study. METHODS: This study included 1106 singletons from the NewGeneris project (2006-2010) with ethylene oxide Hb adducts measured in cord blood. We examined the relationships between adduct levels and offspring's size at birth among all infants and separately among infants of nonsmokers, using linear regression models for birth weight and birth head circumference and logarithmic binomial regression models for small for gestational age. We examined potential interactions between CYP2E1 single nucleotide polymorphisms in cord blood and the effects of ethylene oxide Hb adduct levels on offspring birth size. RESULTS: Higher quartiles of adduct levels as a measure of exposure were associated with decreasing birth weight and head circumference in the overall population. Compared to infants in the lowest quartile, those in the highest quartile exhibited lower birth weight (-70.73 g, 95% confidence interval = -141.16, -0.30) and reduced head circumference (-0.30 cm, 95% confidence interval = -0.58, -0.02). We observed similar, albeit less pronounced, patterns among infants of nonsmokers. There was no evidence of an association between ethylene oxide Hb adducts and risk of small for gestational age, nor consistent evidence of an interaction with CYP2E1 polymorphisms on the association between EO Hb adduct levels and offspring's size at birth. CONCLUSION: Results suggest that higher ethylene oxide Hb adduct levels in cord blood are associated with a reduction in offspring birth size.


Asunto(s)
Peso al Nacer , Citocromo P-450 CYP2E1 , Óxido de Etileno , Sangre Fetal , Hemoglobinas , Humanos , Sangre Fetal/química , Femenino , Recién Nacido , Embarazo , Peso al Nacer/efectos de los fármacos , Citocromo P-450 CYP2E1/genética , Estudios Prospectivos , Masculino , Europa (Continente) , Hemoglobinas/análisis , Adulto , Polimorfismo de Nucleótido Simple , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal , Modelos Lineales , Recién Nacido Pequeño para la Edad Gestacional , Estudios de Cohortes
6.
Environ Res ; 245: 118065, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159663

RESUMEN

BACKGROUND: Some researchers have suggested that zinc (Zn) could reduce the risk of prostate cancer (PC). However, research from observational studies on the relationship between PC risk and biomarkers of Zn exposure shows conflicting results. OBJECTIVES: To evaluate the association between toenail Zn and PC, considering tumour extension and aggressiveness, along with a gene-environment approach, exploring the interaction of individual genetic susceptibility to PC in the relationship between toenail Zn and PC. METHODS: In MCC-Spain study we invited all incident PC cases diagnosed in the study period (2008-2013) and recruited randomly selected general population controls. In this report we included 913 cases and 1198 controls with toenail Zn determined by inductively coupled plasma mass spectrometry. To measure individual genetic susceptibility, we constructed a polygenic risk score based on known PC-related single nucleotide polymorphisms. The association between toenail Zn and PC was explored with mixed logistic and multinomial regression models. RESULTS: Men with higher toenail Zn had higher risk of PC (OR quartile 4 vs.1: 1.41; 95% CI: 1.07-1.85). This association was slightly higher in high-grade PC [(ISUP≤2 Relative risk ratio (RRR) quartile 4 vs.1: 1.36; 1.01-1.83) vs. (ISUP3-5 RRR quartile 4 vs.1: 1.64; 1.06-2.54)] and in advanced tumours [(cT1-cT2a RRR quartile 4 vs.1: 1.40; 95% CI: 1.05-1.89) vs. (cT2b-cT4 RRR quartile 4 vs.1: 1.59; 1.00-2.53)]. Men with lower genetic susceptibility to PC were those at higher risk of PC associated with high toenail Zn (OR quartile 4 vs.1: 2.18; 95% CI: 1.08-4.40). DISCUSSION: High toenail Zn levels were related to a higher risk for PC, especially for more aggressive or advanced tumours. This effect was stronger among men with a lower genetic susceptibility to PC.


Asunto(s)
Neoplasias de la Próstata , Zinc , Masculino , Humanos , Zinc/análisis , Estudios de Casos y Controles , España/epidemiología , Uñas/química , Neoplasias de la Próstata/epidemiología , Neoplasias de la Próstata/genética , Predisposición Genética a la Enfermedad , Compuestos Orgánicos , Factores de Riesgo
7.
Cytopathology ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164925

RESUMEN

BACKGROUND: Oral cancer screening requires analysis capable of detecting changes preceding the clinical manifestation. Oral cytopathology studies as an oral cancer screening have shown promising results. This study aims to evaluate the use of cytopathology in a quali-quantitative analysis using Papanicoloau staining. METHODS: Four experimental groups were evaluated: control (CG), exposed to carcinogens (EG), potentially malignant disorder with and without epithelial dysplasia (D-OPMDG and ND-OPMDG) and oral squamous cell carcinoma (OSCCG). Oral smears were collected using a Cytobrush® and conventional exfoliative cytology. RESULTS: Oral Papanicolaou smears from 143 individuals were analysed in 8100 images. Qualitatively, non-lesional groups exhibited minimal suspected cases (20% in CG and 5% in EG), in the OPMD groups the ability to identify altered cells was low (40% in D-OPMDG and 0% in ND-OPMDG). Conversely, a notable 100% accuracy was achieved in the OSCCG. Quantitatively, a higher percentage of anucleated and a lower percentage of intermediate cells were observed in the OPMDG; a higher proportion of parabasal/suspicious cells was observed in OSCCG. The optimal threshold for improved accuracy in detecting suspected malignancies occurs when the count of parabasal/suspicious cells exceeds 8/100 cells examined. Cytomorphometric analysis revealed a higher nucleus/cytoplasm ratio (N/C) in OSCCG, with a best cutoff point indicating enhanced accuracy in discerning suspected malignancies when exceeding 17% of cells exhibiting this elevated ratio. CONCLUSION: It is possible to suggest updates in cytomorphometric and quantitative analysis in the modified Bethesda system for the oral cavity including objective criteria in the risk classification, therefore improving oral cancer screening.

8.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38475039

RESUMEN

Children with autism spectrum disorder (ASD) have deficits that affect their social relationships, communication, and flexibility in reasoning. There are different types of treatment (pharmacological, educational, psychological, and rehabilitative). Currently, one way to address this problem is by using robotic systems to address the abilities that are altered in these children. The aim of this review will be to analyse the effectiveness of the incorporation of the different robotic systems currently existing in the treatment of children up to 10 years of age diagnosed with autism. A systematic review has been carried out in the PubMed, Scopus, Web of Science, and Dialnet databases, with the following descriptors: child, autism, and robot. The search yielded 578 papers, and nine were selected after the application of the PRISMA guideline. The quality of the studies was analysed with the PEDRo scale, and only those with a score between four and six were selected. From this study, the conclusion is that the use of robots, in general, improves children's behaviour in the short term, but longer-term experiences are necessary to achieve more conclusive results.


Asunto(s)
Trastorno del Espectro Autista , Robótica , Humanos , Robótica/métodos , Niño , Trastorno del Espectro Autista/terapia , Trastorno del Espectro Autista/psicología , Preescolar , Trastorno Autístico/terapia , Trastorno Autístico/psicología
9.
Int J Cancer ; 153(5): 979-993, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37323037

RESUMEN

Use of artificial sweeteners (AS) such as aspartame, cyclamate, saccharin and sucralose is widespread. We evaluated the association of use of aspartame and other AS with cancer. In total 1881 colorectal, 1510 breast, 972 prostate and 351 stomach cancer and 109 chronic lymphocytic leukaemia (CLL) cases and 3629 population controls from the Spanish Multicase-Control (MCC-Spain) study were recruited (2008-2013). The consumption of AS, from table-top sweeteners and artificially sweetened beverages, was assessed through a self-administered and validated food frequency questionnaire (FFQ). Sex-specific quartiles among controls were determined to compare moderate consumers (

Asunto(s)
Diabetes Mellitus , Neoplasias Gástricas , Masculino , Femenino , Humanos , Edulcorantes/efectos adversos , Aspartame/efectos adversos , España/epidemiología , Neoplasias Gástricas/inducido químicamente , Neoplasias Gástricas/epidemiología
10.
Mol Pain ; 19: 17448069231204191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37710969

RESUMEN

Benzydamine is an active pharmaceutical compound used in the oral care pharmaceutical preparation as NSAID. Beside from its anti-inflammatory action, benzydamine local application effectively reliefs pain showing analgesic and anaesthetic properties. Benzydamine mechanism of action has been characterized on inflammatory cell types and mediators highlighting its capacity to inhibit pro-inflammatory mediators' synthesis and release. On the other hand, the role of benzydamine as neuronal excitability modulator has not yet fully explored. Thus, we studied benzydamine's effect over primary cultured DRG nociceptors excitability and after acute and chronic inflammatory sensitization, as a model to evaluate relative nociceptive response. Benzydamine demonstrated to effectively inhibit neuronal basal excitability reducing its firing frequency and increasing rheobase and afterhyperpolarization amplitude. Its effect was time and dose-dependent. At higher doses, benzydamine induced changes in action potential wavelength, decreasing its height and slightly increasing its duration. Moreover, the compound reduced neuronal acute and chronic inflammatory sensitization. It inhibited neuronal excitability mediated either by an inflammatory cocktail, acidic pH or high external KCl. Notably, higher potency was evidenced under inflammatory sensitized conditions. This effect could be explained either by modulation of inflammatory and/or neuronal sensitizing signalling cascades or by direct modulation of proalgesic and action potential firing initiating ion channels. Apparently, the compound inhibited Nav1.8 channel but had no effect over Kv7.2, Kv7.3, TRPV1 and TRPA1. In conclusion, the obtained results strengthen the analgesic and anti-inflammatory effect of benzydamine, highlighting its mode of action on local pain and inflammatory signalling.


Asunto(s)
Bencidamina , Humanos , Bencidamina/metabolismo , Bencidamina/farmacología , Bencidamina/uso terapéutico , Dolor/tratamiento farmacológico , Dolor/metabolismo , Nociceptores/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/uso terapéutico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos/metabolismo
11.
Small ; 19(49): e2305026, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37596060

RESUMEN

Ag2 S nanoparticles (NPs) emerge as a unique system that simultaneously features in vivo near-infrared (NIR) imaging, remote heating, and low toxicity thermal sensing. In this work, their capabilities are extended into the fields of optical coherence tomography (OCT), as contrast agents, and NIR probes in both ex vivo and in vivo experiments in eyeballs. The new dual property for ocular imaging is obtained by the preparation of Ag2 S NPs ensembles with a biocompatible amphiphilic block copolymer. Rather than a classical ligand exchange, where surface traps may arise due to incomplete replacement of surface sites, the use of this polymer provides a protective extra layer that preserves the photoluminescence properties of the NPs, and the procedure allows for the controlled preparation of submicrometric scattering centers. The resulting NPs ensembles show extraordinary colloidal stability with time and biocompatibility, enhancing the contrast in OCT with simultaneous NIR imaging in the second biological window.


Asunto(s)
Nanopartículas , Tomografía de Coherencia Óptica , Medios de Contraste , Polímeros , Imagen Óptica
12.
J Pharmacol Exp Ther ; 386(3): 277-287, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37024146

RESUMEN

Pulmonary fibroblasts are the primary producers of extracellular matrix (ECM) in the lungs, and their pathogenic activation drives scarring and loss of lung function in idiopathic pulmonary fibrosis (IPF). This uncontrolled production of ECM is stimulated by mechanosignaling and transforming growth factor beta 1 (TGF-ß1) signaling that together promote transcriptional programs including Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). G protein-coupled receptors (GPCRs) that couple to G α s have emerged as pharmacological targets to inactivate YAP/TAZ signaling and promote lung fibrosis resolution. Previous studies have shown a loss of expression of "antifibrotic GPCRs"-receptors that couple to G α s, in IPF patient-derived fibroblasts compared with non-IPF samples. Of the 14 G α s GPCRs we found to be expressed in lung fibroblasts, the dopamine receptor D1 (DRD1) was one of only two not repressed by TGF-ß1 signaling, with the ß2-adrenergic receptor being the most repressed. We compared the potency and efficacy of multiple D1 and ß2 receptor agonists +/- TGF-ß1 treatment in vitro for their ability to elevate cAMP, inhibit nuclear localization of YAP/TAZ, regulate expression of profibrotic and antifibrotic genes, and inhibit cellular proliferation and collagen deposition. Consistently, the activity of ß2 receptor agonists was lost, whereas D1 receptor agonists was maintained, after stimulating cultured lung fibroblasts with TGF-ß1. These data further support the therapeutic potential of the dopamine receptor D1 and highlight an orchestrated and pervasive loss of antifibrotic GPCRs mediated by TGF-ß1 signaling. SIGNIFICANCE STATEMENT: Idiopathic pulmonary fibrosis (IPF) is a deadly lung disease with limited therapies. GPCRs have emerged as a primary target for the development of novel antifibrotic drugs; however, a challenge to this approach is the dramatic changes in GPCR expression in response to profibrotic stimuli. Here, we investigate the impact of TGF-ß1 on the expression of antifibrotic GPCRs and show the D1 dopamine receptor expression is uniquely maintained in response to TGF-ß1, further implicating it as a compelling target to treat IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Factor de Crecimiento Transformador beta1 , Humanos , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón , Receptores Dopaminérgicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
13.
New Phytol ; 238(4): 1461-1478, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36829299

RESUMEN

Seeds slowly accumulate damage during storage, which ultimately results in germination failure. The seed coat protects the embryo from the external environment, and its composition is critical for seed longevity. Flavonols accumulate in the outer integument. The link between flavonol composition and outer integument development has not been explored. Genetic, molecular and ultrastructural assays on loss-of-function mutants of the flavonoid biosynthesis pathway were used to study the effect of altered flavonoid composition on seed coat development and seed longevity. Controlled deterioration assays indicate that loss of function of the flavonoid 3' hydroxylase gene TT7 dramatically affects seed longevity and seed coat development. Outer integument differentiation is compromised from 9 d after pollination in tt7 developing seeds, resulting in a defective suberin layer and incomplete degradation of seed coat starch. These distinctive phenotypes are not shared by other mutants showing abnormal flavonoid composition. Genetic analysis indicates that overaccumulation of kaempferol-3-rhamnoside is mainly responsible for the observed phenotypes. Expression profiling suggests that multiple cellular processes are altered in the tt7 mutant. Overaccumulation of kaempferol-3-rhamnoside in the seed coat compromises normal seed coat development. This observation positions TRANSPARENT TESTA 7 and the UGT78D1 glycosyltransferase, catalysing flavonol 3-O-rhamnosylation, as essential players in the modulation of seed longevity.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Longevidad , Semillas/metabolismo , Flavonoides/metabolismo , Flavonoles/metabolismo
14.
Exp Dermatol ; 32(7): 999-1006, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37009806

RESUMEN

Thermoregulation and heat dissipation by sweat production and evaporation are vital for human survival. However, hyperhidrosis or excessive perspiration might affect people's quality of life by causing discomfort and stress. The prolonged use of classical antiperspirants, anticholinergic medications or botulinum toxin injections for persistent hyperhidrosis might produce diverse side effects that limit their clinical use. Inspired by botox molecular mode of action, we used an in silico molecular modelling approach to design novel peptides to target neuronal acetylcholine exocytosis by interfering with the Snapin-SNARE complex formation. Our exhaustive design rendered the selection of 11 peptides that decreased calcium-dependent vesicle exocytosis in rat DRG neurons, reducing αCGRP release and TRPV1 inflammatory sensitization. The most potent peptides were palmitoylated peptides SPSR38-4.1 and SPSR98-9.1 that significantly suppressed acetylcholine release in vitro in human LAN-2 neuroblastoma cells. Noteworthy, local acute and chronic administration of SPSR38-4.1 peptide significantly decreased, in a dose-dependent manner, pilocarpine-induced sweating in an in vivo mouse model. Taken together, our in silico approach lead to the identification of active peptides able to attenuate excessive sweating by modulating neuronal acetylcholine exocytosis, and identified peptide SPSR38-4.1 as a promising new antihyperhidrosis candidate for clinical development.


Asunto(s)
Antitranspirantes , Hiperhidrosis , Humanos , Ratas , Ratones , Animales , Antitranspirantes/farmacología , Calidad de Vida , Acetilcolina/farmacología , Acetilcolina/uso terapéutico , Hiperhidrosis/tratamiento farmacológico , Hiperhidrosis/etiología , Péptidos/química , Exocitosis/fisiología , Neuronas/fisiología
15.
Ann Behav Med ; 57(3): 216-226, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36394497

RESUMEN

BACKGROUND: The study of impact of lockdowns on individual health-related behaviors has produced divergent results. PURPOSE: To identify patterns of change in multiple health-related behaviors analyzed as a whole, and their individual determinants. METHODS: Between March and August 2020, we collected data on smoking, alcohol, physical activity, weight, and sleep in a population-based cohort from Catalonia who had available pre-pandemic data. We performed multiple correspondence and cluster analyses to identify patterns of change in health-related behaviors and built multivariable multinomial logistic regressions to identify determinants of behavioral change. RESULTS: In 10,032 participants (59% female, mean (SD) age 55 (8) years), 8,606 individuals (86%) modified their behavior during the lockdown. We identified five patterns of behavioral change that were heterogeneous and directed both towards worsening and improvement in diverse combinations. Patterns ranged from "global worsening" (2,063 participants, 21%) characterized by increases in smoking, alcohol consumption, and weight, and decreases in physical activity levels and sleep time, to "improvement" (2,548 participants, 25%) characterized by increases in physical activity levels, decreases in weight and alcohol consumption, and both increases and decreases in sleep time. Being female, of older age, teleworking, having a higher education level, assuming caregiving responsibilities, and being more exposed to pandemic news were associated with changing behavior (all p < .05), but did not discriminate between favorable or unfavorable changes. CONCLUSIONS: Most of the population experienced changes in health-related behavior during lockdowns. Determinants of behavior modification were not explicitly associated with the direction of changes but allowed the identification of older, teleworking, and highly educated women who assumed caregiving responsibilities at home as susceptible population groups more vulnerable to lockdowns.


Lockdowns implemented during the first surge of the COVID-19 pandemic created highly disruptive scenarios impacting many aspects of life, including health-related behaviors. While early studies on isolated health-related behaviors partly aid in the understanding of changes in some of these behaviors, there is robust evidence supporting the idea that health-related behaviors and their changes often co-occur and should be studied and analyzed as a whole. Hence, in this study, we used hypothesis-free methods to identify inter-dependent patterns of change in health-related behaviors including tobacco smoking, alcohol consumption, physical activity, sleep, and weight in a population-based sample of 10,032 adults from Catalonia, Spain. We found that 86% of participants modified their health-related behavior during the lockdown as we identified five patterns of behavioral change, ranging from general worsening to improvement, in diverse combinations. Additionally, we found that being female, older age, teleworking, highly educated, assuming caregiving responsibilities, and having a high exposure to pandemic news were main the determinants of patterns characterized by changing behaviors (both worsening and improving). Overall, our results highlight the heterogeneity, co-occurrence, and inter-play between health-related behaviors under a natural experiment, and identify common demographic, socio-environmental and behavioral factors that might predict changes in behavior.


Asunto(s)
COVID-19 , Humanos , Femenino , Persona de Mediana Edad , Masculino , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Conductas Relacionadas con la Salud , Ejercicio Físico , Fumar/epidemiología
16.
Brain ; 145(7): 2507-2517, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35088840

RESUMEN

Alzheimer's disease has a long asymptomatic phase that offers a substantial time window for intervention. Using this window of opportunity will require early diagnostic and prognostic biomarkers to detect Alzheimer's disease pathology at predementia stages, thus allowing identification of patients who will most probably progress to dementia of the Alzheimer's type and benefit from specific disease-modifying therapies. Consequently, we searched for CSF proteins associated with disease progression along with the clinical disease staging. We measured the levels of 184 proteins in CSF samples from 556 subjective cognitive decline and mild cognitive impairment patients from three independent memory clinic longitudinal studies (Spanish ACE, n = 410; German DCN, n = 93; German Mannheim, n = 53). We evaluated the association between protein levels and clinical stage, and the effect of protein levels on the progression from mild cognitive impairment to dementia of the Alzheimer's type. Mild cognitive impairment subjects with increased CSF level of matrix metalloproteinase 10 (MMP-10) showed a higher probability of progressing to dementia of the Alzheimer's type and a faster cognitive decline. CSF MMP-10 increased the prediction accuracy of CSF amyloid-ß 42 (Aß42), phospho-tau 181 (P-tau181) and total tau (T-tau) for conversion to dementia of the Alzheimer's type. Including MMP-10 to the [A/T/(N)] scheme improved considerably the prognostic value in mild cognitive impairment patients with abnormal Aß42, but normal P-tau181 and T-tau, and in mild cognitive impairment patients with abnormal Aß42, P-tau181 and T-tau. MMP-10 was correlated with age in subjects with normal Aß42, P-tau181 and T-tau levels. Our findings support the use of CSF MMP-10 as a prognostic marker for dementia of the Alzheimer's type and its inclusion in the [A/T/(N)] scheme to incorporate pathologic aspects beyond amyloid and tau. CSF level of MMP-10 may reflect ageing and neuroinflammation.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Metaloproteinasa 10 de la Matriz , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Biomarcadores , Disfunción Cognitiva/diagnóstico , Progresión de la Enfermedad , Humanos , Estudios Longitudinales , Metaloproteinasa 10 de la Matriz/líquido cefalorraquídeo , Fragmentos de Péptidos , Proteínas tau
17.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674881

RESUMEN

Few studies have addressed the impact of the association between Alzheimer's disease (AD) biomarkers and NPSs in the conversion to dementia in patients with mild cognitive impairment (MCI), and no studies have been conducted on the interaction effect of these two risk factors. AT(N) profiles were created using AD-core biomarkers quantified in cerebrospinal fluid (CSF) (normal, brain amyloidosis, suspected non-Alzheimer pathology (SNAP) and prodromal AD). NPSs were assessed using the Neuropsychiatric Inventory Questionnaire (NPI-Q). A total of 500 individuals with MCI were followed-up yearly in a memory unit. Cox regression analysis was used to determine risk of conversion, considering additive and multiplicative interactions between AT(N) profile and NPSs on the conversion to dementia. A total of 224 participants (44.8%) converted to dementia during the 2-year follow-up study. Pathologic AT(N) groups (brain amyloidosis, prodromal AD and SNAP) and the presence of depression and apathy were associated with a higher risk of conversion to dementia. The additive combination of the AT(N) profile with depression exacerbates the risk of conversion to dementia. A synergic effect of prodromal AD profile with depressive symptoms is evidenced, identifying the most exposed individuals to conversion among MCI patients.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Disfunción Cognitiva , Humanos , Estudios de Seguimiento , Depresión/complicaciones , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/patología , Amiloidosis/complicaciones , Biomarcadores/líquido cefalorraquídeo , Progresión de la Enfermedad , Pruebas Neuropsicológicas , Péptidos beta-Amiloides/líquido cefalorraquídeo
18.
Am J Physiol Lung Cell Mol Physiol ; 322(1): L23-L32, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34755530

RESUMEN

Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are transcription cofactors implicated in the contractile and profibrotic activation of fibroblasts. Fibroblast contractile function is important in alveologenesis and in lung wound healing and fibrosis. As paralogs, YAP and TAZ may have independent or redundant roles in regulating transcriptional programs and contractile function. Using IMR-90 lung fibroblasts, microarray analysis, and traction microscopy, we tested whether independent YAP or TAZ knockdown alone was sufficient to limit transcriptional activation and contraction in vitro. Our results demonstrate limited effects of knockdown of either YAP or TAZ alone, with more robust transcriptional and functional effects observed with combined knockdown, consistent with cooperation or redundancy of YAP and TAZ in transforming growth factor ß1 (TGFß1)-induced fibroblast activation and contractile force generation. The transcriptional responses to combined YAP/TAZ knockdown were focused on a relatively small subset of genes with prominent overrepresentation of genes implicated in contraction and migration. To explore potential disease relevance of our findings, we tested primary human lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis and confirmed that YAP and TAZ combined knockdown reduced the expression of three cytoskeletal genes, ACTA2, CNN1, and TAGLN. We then compared the contribution of these genes, along with YAP and TAZ, to contractile function. Combined knockdown targeting YAP/TAZ was more effective than targeting any of the individual cytoskeletal genes in reducing contractile function. Together, our results demonstrate that YAP and TAZ combine to regulate a multigene program that is essential to fibroblast contractile function.


Asunto(s)
Fibroblastos/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Fenómenos Biomecánicos/efectos de los fármacos , Línea Celular , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Crecimiento Transformador beta1/farmacología
19.
Am J Physiol Lung Cell Mol Physiol ; 323(6): L685-L697, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36223640

RESUMEN

Cellular senescence is emerging as a driver of idiopathic pulmonary fibrosis (IPF), a progressive and fatal disease with limited effective therapies. The senescence-associated secretory phenotype (SASP), involving the release of inflammatory cytokines and profibrotic growth factors by senescent cells, is thought to be a product of multiple cell types in IPF, including lung fibroblasts. NF-κB is a master regulator of the SASP, and its activity depends on the phosphorylation of p65/RelA. The purpose of this study was to assess the role of Pim-1 kinase as a driver of NF-κB-induced production of inflammatory cytokines from low-passage IPF fibroblast cultures displaying markers of senescence. Our results demonstrate that Pim-1 kinase phosphorylates p65/RelA, activating NF-κB activity and enhancing IL-6 production, which in turn amplifies the expression of PIM1, generating a positive feedback loop. In addition, targeting Pim-1 kinase with a small molecule inhibitor dramatically inhibited the expression of a broad array of cytokines and chemokines in IPF-derived fibroblasts. Furthermore, we provide evidence that Pim-1 overexpression in low-passage human lung fibroblasts is sufficient to drive premature senescence, in vitro. These findings highlight the therapeutic potential of targeting Pim-1 kinase to reprogram the secretome of senescent fibroblasts and halt IPF progression.


Asunto(s)
Fibrosis Pulmonar Idiopática , Neumonía , Humanos , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/farmacología , FN-kappa B/metabolismo , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Senescencia Celular , Pulmón/metabolismo , Neumonía/metabolismo , Citocinas/metabolismo
20.
J Cell Sci ; 133(23)2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33172983

RESUMEN

Matrix resorption is essential to the clearance of the extracellular matrix (ECM) after normal wound healing. A disruption in these processes constitutes a main component of fibrotic diseases, characterized by excess deposition and diminished clearance of fibrillar ECM proteins, such as collagen type I. The mechanisms and stimuli regulating ECM resorption in the lung remain poorly understood. Recently, agonism of dopamine receptor D1 (DRD1), which is predominantly expressed on fibroblasts in the lung, has been shown to accelerate tissue repair and clearance of ECM following bleomycin injury in mice. Therefore, we investigated whether DRD1 receptor signaling promotes the degradation of collagen type I by lung fibroblasts. For cultured fibroblasts, we found that DRD1 agonism enhances extracellular cleavage, internalization and lysosomal degradation of collagen I mediated by cathepsin K, which results in reduced stiffness of cell-derived matrices, as measured by atomic force microscopy. In vivo agonism of DRD1 similarly enhanced fibrillar collagen degradation by fibroblasts, as assessed by tissue labeling with a collagen-hybridizing peptide. Together, these results implicate DRD1 agonism in fibroblast-mediated collagen clearance, suggesting an important role for this mechanism in fibrosis resolution.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Colágeno Tipo I , Fibroblastos , Animales , Catepsina K/genética , Células Cultivadas , Colágeno , Colágeno Tipo I/genética , Matriz Extracelular , Pulmón , Ratones , Receptores de Dopamina D1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA