Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Chem Phys ; 158(5): 054302, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36754788

RESUMEN

Using as functional form a combination of valence bond and mechanic molecular terms a new full-dimensional potential energy surface was developed for the title reaction, named PES-2022, which was fitted to high-level ab initio calculations at the coupled-cluster singles, doubles, and perturbative triples-F12 explicitly correlated level on a representative number of points describing the reactive system. This surface simultaneously describes the two reaction channels, hydrogen abstraction from the methyl group [(R1) path] and from the alcohol group [(R2) path] of methanol to form water. PES-2022 is a smooth and continuous surface, which reasonably describes the topology of this reactive system from reactants to products, including the intermediate complexes present in the system. Based on PES-2022 an exhaustive dynamics study was performed using quasi-classical trajectory calculations under two different initial conditions: at a fixed room temperature, for direct comparison with the experimental evidence and at different collision energies, to analyze possible mechanisms of reaction. In the first case, the available energy was mostly deposited as water vibrational energy, with the vibrational population inverted in the stretching modes and not inverted in the bending modes, reproducing the experimental evidence. In the second case, the analysis of different dynamics magnitudes (excitation functions, product energy partitioning, and product scattering distributions), allows us to suggest different mechanisms for both (R1) and (R2) paths: a direct mechanism for the (R2) path vs an indirect one, related with "nearly trapped" trajectories in the intermediate complexes, for the (R1) path.

2.
Phys Chem Chem Phys ; 24(5): 2887-2900, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35060978

RESUMEN

In this paper we study the gas-phase hydrogen abstraction reaction between fluorine atoms and silane in a three-step process: potential energy surface, kinetics and dynamics. Firstly, we developed for the first time an analytical full-dimensional surface, named PES-2021, using high-level explicitly-correlated ab initio data as the input. PES-2021 represents a continuous and smooth potential with analytical gradients and includes intuitive concepts (stretching and bending nuclear motions). Based on the PES-2021 quasi-classical trajectory (QCT) calculations were performed to analyse the kinetics and dynamics. Secondly, in the kinetics study at room temperature we observed a very fast reaction with a rate constant of 3.90 × 10-10 cm3 molecule-1 s-1, reproducing the scarce experimental evidence. Finally, the third step is the dynamics study, which was performed under two different conditions, a temperature of 77 K and a collision energy of 2.5 kcal mol-1, for direct comparison with experiments. In the first case, we found the largest fraction, 44%, deposited as HF(v) vibration, where the most populated states were HF(v = 2, 3), both results reproducing the experimental evidence. The largest discrepancy with the experiment was found in the HF(j) rotational distribution, where hotter distributions were found, this discrepancy being associated with limitations of the QCT method. The second case, E = 2.5 kcal mol-1, was a state-to-state correlated study and, therefore, more difficult. The theory overestimates (again) and consequently underestimates, respectively, the rotational and vibrational fractions of the HF(v,j) product as compared with experiments. While experimentally the SiH3 product appears excited only in the umbrella mode, ν2 = 0-5, correlated with the HF(v) co-product vibrational excited in v = 3 and 4, theoretically a wider vibrational distribution is found in both products, and these distributions have, obviously, an influence on the product correlated speed distributions. However, the product correlated angular distribution is well reproduced. In general, these results allowed us to test the capacity of PES-2021 + QCT tools to simulate the experimental evidence, revealing that agreement is better when average properties are compared, making the comparison worse when state-to-state properties are compared. Different causes of the theory/experiment discrepancies were analysed, and it was found that they are due, mainly, to limitations of the QCT method.

3.
Phys Chem Chem Phys ; 24(16): 9735-9742, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35412544

RESUMEN

In order to understand the gas-phase hydrogen abstraction reaction between O(3P) and silane we began by developing the first full-dimensional analytical potential energy surface, named PES-2022. It is basically a valence bond function augmented with molecular mechanic terms describing in an intuitive way stretching and bending nuclei motions, and it is fitted to high level ab initio calculations. The surface presents continuous and smooth behaviour, with analytical first energy derivatives, on which the hydrogen atoms in silane are permutationally symmetric. Based on PES-2022, a kinetics study was performed using the variational transition-state theory with multidimensional tunnelling corrections in the temperature range of 300-1000 K. We observed that experimental and theoretical results show widely spread results, both in absolute value and temperature dependence, possibly because they include the reactivity from both O(3P) and O(1D) electronic states, which present different mechanisms and multiple channels. When the comparison is performed on the same footing, O(3P) + SiH4 → HO + SiH3, the present results agree with Ding and Marshall's experiments and with Zhang et al.'s theoretical rate constants. The kinetic isotope effects (KIEs) reproduced the only experimental value, improving previous theoretical results. Finally, a dynamics study was performed on PES-2022 using quasi-classical trajectory calculations under two different initial conditions, at fixed room temperature and at a fixed collision energy of 8.0 kcal mol-1. In the first case, the available energy deposited as HO(v) vibration was 47%, with population inversion, P(v = 0)/P(v = 1) = 11/89%, reproducing the experimental evidence. In the second case, the experimental product translational distribution was reasonably simulated, while the angular product distribution presented opposite behaviour, backward versus forward. On analysing this discrepancy, we found that while in the present work the O(3P) + SiH4 reaction was reported, in the experiment both O(3P) and O(1D) electronic states are reported. So, the comparison was not performed on the same footing. In sum, agreement of the present results with experiments permits us to be reasonably optimistic about the quality and accuracy of the new PES, and at the same time to highlight the fact that theory/experiment comparisons must be performed on the same footing.

4.
Phys Chem Chem Phys ; 23(37): 21065-21077, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34523628

RESUMEN

For the theoretical study of the title reaction, an analytical full-dimensional potential energy surface named PES-2021 was developed for the first time, by fitting high-level explicitly-correlated ab initio data. This reaction presented high exothermicity, (298 K) = -11.6 kcal mol-1, reproducing the experimental evidence; it is a barrierless reaction and no intermediate complexes were found. PES-2021 is a continuous and smooth potential energy surface, it includes intuitive concepts in its development and fitting, such as stretching and bending nuclear motions, and it presents analytical first energy derivatives. Based on PES-2021, kinetics and dynamics studies were carried out using quasi-classical trajectory calculations. In the kinetics study, over the temperature range 300-450 K, we observed that rate constants were practically independent of temperature, with an almost zero activation energy, as compared to 0.0 and -0.48 kcal mol-1 experimentally reported. In this kinetics study the role of the spin-orbit effect on reactivity was analysed. In the dynamics study, different product pair-correlated dynamics properties were compared with the only experimental evidence: product energy partition, product vibrational distribution, product angular distribution and product speed distribution. We observed two mechanisms of reaction, a stripping mechanism associated with large impact parameters and forward scattering, and an indirect mechanism associated with sideways-backward scattering related with "nearly-trapped" trajectories due to the product rotation. In general, theoretical results reasonably simulate the experimental measurements when they consider some rotational and vibrational constraints as well as binning techniques to mimic a quantum-mechanical behaviour. Although the agreement is not quantitative, the present results shed light on the mechanism of this difficult polyatomic reactive system.

5.
Phys Chem Chem Phys ; 22(39): 22591-22601, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33000848

RESUMEN

A new analytical potential energy surface was developed for the first time for the nine-body O(3P) + C2H6 hydrogen abstraction reaction, named PES-2020, which was fitted to explicitly-correlated high-level electronic structure calculations. This surface simulates the topography of the reactive system, from reactants to products, OH(v,j) + C2H5. The adiabatic energy of reaction, ΔHr(0 K) = -2.33 kcal mol-1, reproduces the experimental evidence, and the barrier height, 10.70 kcal mol-1, agrees with the ab initio calculations used as input. In addition, an intermediate complex in the exit channel is observed, which is stabilized with respect to the products of the reaction. Based on PES-2020 a dynamics study was carried out, where quasi-classical trajectory calculations were performed for collision energies in the range of 7.0-60.0 kcal mol-1, which covers high collision energy regions. The reaction cross section increases with collision energy; the largest fraction of available energy is deposited as translational energy (44-66%), and the scattering distribution evolves from backward to forward with collision energy. These findings reproduce previous theoretical calculations using electronic structure calculations of lower levels. However, where these previous studies failed, viz. in rotational and vibrational OH(v,j) distributions, PES-2020 reproduces practically quantitatively the experimental evidence, i.e., cold vibration and rotation, the rotational distribution peaking at j = 1-3 depending on the collision energy. In sum, this behaviour is typical of gas-phase hydrogen abstraction reactions with direct mechanism and high reaction barrier.

6.
Phys Chem Chem Phys ; 22(26): 14796-14810, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32578642

RESUMEN

To describe the gas-phase hydrogen abstraction reaction between the hydroxyl radical and the ethane molecule, an analytical full-dimensional potential energy surface was developed within the Born-Oppenheimer approximation. This reactive process is a ten-body system with 24 degrees of freedom, which represents a theoretical challenge. The new surface, named PES-2020, presents low barrier, 3.76 kcal mol-1, high exothermicity, -16.20 kcal mol-1, and intermediate complexes in the entrance and exit channels. To test the quality and accuracy of the analytical surface several stringent tests were performed and, in general, PES-2020 reasonably simulates the theoretical information used as input, it is a continuous and smooth potential, without spurious minima, it presents great versatility and a reasonable description of this ten-body reaction. Based on this surface, an exhaustive kinetics and dynamics study was performed with a double objective: to analyze the capacity of the new surface to simulate the experimental evidence, and to help understand the mechanism of reaction and the role of the ethyl group in the reaction. In the kinetics study, three approaches were used: variational transition-state theory with multidimensional tunnelling (VTST/MT), ring polymer molecular dynamics (RPMD) and quasi-classical trajectory (QCT) results, in the temperature range 200-2000 K. There is general agreement between the three approaches and they reasonably simulate the experimental behaviour, which gives confidence to the fitness of the new surface to describe the system. In the dynamics study, QCT calculations were performed at 298 K for a direct comparison with the only experimental result reported. We found that ethyl fragment presents a noticeable internal energy (∼20%) and so cannot be considered as a spectator. The water product vibrational energy is reasonably reproduced, though when a level-by-level distribution is analyzed the agreement is only qualitative.

7.
Phys Chem Chem Phys ; 20(41): 26634-26642, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30318524

RESUMEN

A theoretical study of the dynamics of the F(2P) + C2H6 hydrogen abstraction reaction was presented using quasi-classical trajectories propagated on an ab initio fitted global potential energy surface, PES-2018. The results were compared with experimental information at a collision energy of 3.2 kcal mol-1. We found a small fraction of available energy, 13%, deposited as C2H5 internal energy, the largest fraction, 67%, being deposited as HF(v) vibration, where the HF(v,j) rotational distribution is colder when the vibrational level increases. These results reproduce the experimental evidence. In addition, the reaction cross section scarcely changes with energy, and the scattering distribution shifts from isotropic to forward when the HF(v) vibrational state increases. These last two findings await experimental confirmation. Finally, two important issues related to the title reaction were analysed: the role of an ethyl radical, and the theory/experiment controversy about the HF(v) bimodal vibrational distribution. We found that in spite of its low internal energy, the ethyl product does not act as a spectator of the reaction, and that the controversy can be explained by the net result of two opposite effects: strong couplings between vibrational modes, which are the rule and complicate dynamics analysis in polyatomic systems, and an artificial energy transfer from the ethyl radical to the HF molecule due to the classical nature of the quasi-classical trajectory calculations. As is seen, the ethyl radical actively participates in both effects.

8.
Phys Chem Chem Phys ; 20(30): 19860-19870, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30039153

RESUMEN

An exhaustive kinetics study was performed for the title reaction using two theoretical approaches: variational transition-state theory and quasi-classical trajectory calculations, based on an original new analytical full-dimensional potential energy surface, named PES-2018, which has been fitted to high-level ab initio calculations. The theoretical results were compared with the available experimental data in the temperature range 189-350 K, a difficult comparison because of experimental controversies about the final rate constants (factor of about two) and on the activation energy (positive and negative values have been reported). There is agreement between the two theoretical approaches, with differences of less than 20%, and with the most recent experiments, with differences of less than 30%. Both theories gave small and positive activation energies, reasonably reproducing the most recent experiments, although they showed less dependence on temperature. To understand the theory/experiment differences, several sources of error were analysed, without discarding experimental uncertainties, such as limitations of the theoretical tools (PES and kinetics approaches), and the manner in which spin-orbit effects were included in the present non-relativistic study. Finally, H/D and 12C/13C kinetics isotope effects were reported for the first time for the title reaction, though unfortunately no experimental data are available for comparison.

9.
Phys Chem Chem Phys ; 19(2): 1580-1589, 2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-27990521

RESUMEN

Using a full-dimensional analytical potential energy surface describing the OH/OD + GeH4 hydrogen abstraction reactions (J. Espinosa-Garcia, C. Rangel and J. C. Corchado, Phys. Chem. Chem. Phys., 2016, 18, 16941), quasi-classical trajectory calculations were performed at 298 K to simulate the scarce experimental data at this temperature. This system presents wells in the entrance and exit channels, influencing product angular distribution, which is practically isotropic. Moreover, isotopic effects were not observed. It was found that the GeH3 co-product presents little internal energy (11% of the total available energy), although not negligible, and that the water product receives the major part of the available energy, mainly in the newly formed OH bond, while the initial OH/OD reactant bond acts as a spectator mode. These results reproduce the experimental evidence, the larger discrepancy being in the water bending vibrational distribution, which is broader in the experiment. Several factors were analyzed to account for this discrepancy, and it was concluded that the zero-point energy violation per mode is the main, but not the only, cause.

10.
Phys Chem Chem Phys ; 18(25): 16941-9, 2016 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-27292879

RESUMEN

We report an analytical full-dimensional potential energy surface for the GeH4 + OH → GeH3 + H2O reaction based on ab initio calculations. It is a practically barrierless reaction with very high exothermicity and the presence of intermediate complexes in the entrance and exit channels, reproducing the experimental evidence. Using this surface, thermal rate constants for the GeH4 + OH/OD isotopic reactions were calculated using two approaches: variational transition state theory (VTST) and quasi-classical trajectory (QCT) calculations, in the temperature range 200-1000 K, and results were compared with the only experimental data at 298 K. Both methods showed similar values over the whole temperature range, with differences less than 30%; and the experimental data was reproduced at 298 K, with negative temperature dependence below 300 K, which is associated with the presence of an intermediate complex in the entrance channel. However, while the QCT approach reproduced the experimental kinetic isotope effect, the VTST approach underestimated it. We suggest that this difference is associated with the harmonic approximation used in the treatment of vibrational frequencies.

11.
J Phys Chem A ; 120(1): 5-13, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26625910

RESUMEN

To analyze the role of CH-stretching vibrational excitation on the reactivity and dynamics of the F((2)P) + CHD3(v1=0,1) reactions, quasiclassical trajectory calculations using a full-dimensional analytical potential energy surface at different collision energies were performed. The extra energy of the CH excitation had almost no effect on the reactivity for the DF + CHD2 channel, although it increased the reactivity for the HF + CD3 channel, with the net effect being that CH excitation barely modified overall reactivity. In addition, the DF/HF branching ratio was not far from the statistical value for the ground-state reaction, whereas CH excitation decreased this ratio. These results, intimately related to the topology of the entrance channel, agree with recent theoretical results obtained using different surfaces (although some differences even persist among them) but strongly contradict recent experiments. This controversy will doubtless guarantee more accurate experiments and theoretical calculations in the future. However, properties related to the exit channel show reasonable theoretical/experimental agreement. Thus, the extra energy of CH excitation is mainly channelled into the HF and DF products for the HF + CD3 and DF + CHD 2 channels, respectively, and the product scattering distributions are forward in both channels, where CH excitation has almost no effect on them.

13.
Phys Chem Chem Phys ; 17(8): 6009-15, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25639846

RESUMEN

Quasi-classical trajectory calculations based on a full-dimensional analytical potential energy surface have been performed at different collision energies to analyze the role of symmetric (ν1 = 1) and antisymmetric (ν3 = 1) stretch modes of methane in reactivity and dynamics of the O((3)P) + CH4 (νi = 0, 1; i = 1, 3) gas-phase reactions. Both CH stretch modes increase reactivity with respect to the methane vibrational ground-state by factors between 1.5 and 3. Additionally, the ν1 = 1 mode is slightly more reactive than the ν3 = 1 mode by factors between 1.4 and 1.1 depending on the collision energy. Both stretch modes give similar pictures of OH product vibrational and angular distributions. The former finding shows inverted OH (0, 1) vibrational population, discarding mode selectivity, and the latter shows a shift of the scattering angle from backward to sideways with the vibrational excitation and therefore a change in the mechanism. For the dynamic properties analyzed, the theoretical results for the ν3 = 1 mode reproduce the experimental evidence, while those for the ν1 = 1 mode await confirmation.

14.
Phys Chem Chem Phys ; 16(18): 8428-33, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24668385

RESUMEN

Motivated by recent experiments on the title reaction at the high collision energy of 64 kcal mol(-1) reported by Minton et al., a detailed dynamics study was carried out using quasi-classical trajectory (QCT) calculations based on an analytical potential energy surface recently developed by our group, PES-2014. Our results reproduce the experimental evidence: most of the available energy appears as translational energy (80 ± 10%) and scattering distribution is forward, suggesting a stripping mechanism associated with high impact parameters. Of special interest is the triple (angle-velocity) differential cross section (a combination of translational and scattering distributions), which shows the same structure associated with the products. Agreement with experiment lends confidence to the new PES-2014 surface; this is encouraging, furthermore, because its fitting was made with thermal behaviour in mind, and higher energy areas were neither sampled nor weighted sufficiently.

15.
J Phys Chem A ; 118(3): 554-60, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24383979

RESUMEN

The hydrogen abstraction reaction of fluorine with ammonia represents a true chemical challenge because it is very fast, is followed by secondary abstraction reactions, which are also extremely fast, and presents an experimental/theoretical controversy about rate coefficients. Using a previously developed full-dimensional analytical potential energy surface, we found that the F + NH3 → HF + NH2 system is a barrierless reaction with intermediate complexes in the entry and exit channels. In order to understand the reactivity of the title reaction, thermal rate coefficidents were calculated using two approaches: ring polymer molecular dynamics and quasi-classical trajectory calculations, and these were compared with available experimental data for the common temperature range 276-327 K. The theoretical results obtained show behavior practically independent of temperature, reproducing Walther-Wagner's experiment, but in contrast with Persky's more recent experiment. However, quantitatively, our results are 1 order of magnitude larger than those of Walther-Wagner and reasonably agree with the Persky at the lowest temperature, questioning so Walther-Wagner's older data. At present, the reason for this discrepancy is not clear, although we point out some possible reasons in the light of current theoretical calculations.


Asunto(s)
Amoníaco/química , Flúor/química , Hidrógeno/química , Simulación de Dinámica Molecular , Cinética , Temperatura
16.
J Chem Phys ; 141(9): 094307, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25194372

RESUMEN

Motivated by a recent crossed-beam experiment on the title reaction reported by Pan and Liu [J. Chem. Phys. 140, 191101 (2014)], a detailed dynamics study was performed at three collision energies using quasiclassical trajectory (QCT) calculations based on a full-dimensional potential energy surface recently developed by our group (PES-2014). Although theory/experiment agreement is not yet quantitative, in general the theoretical results reproduce the experimental evidence: the vibrational branching ratio of OH(v = 1)/OH(v = 0) is ~0.8/0.2, excitation of the antisymmetric CH stretching mode in methane increases reactivity by factor 2.28-1.50, although an equivalent amount as translational energy is more efficient in promoting the reaction and, finally, product angular distribution shifts from backward in the CH4(ν = 0) ground-state to sideways when the antisymmetric CH stretching mode is excited. These results give confidence to the PES-2014 surface, depend on the quantization procedure used, are comparable with recent QCT calculations or improve previous theoretical studies using a different surface, and demonstrate the utility of the theory/experiment collaboration.

17.
Phys Chem Chem Phys ; 15(44): 19180-90, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-24105098

RESUMEN

A state-to-state dynamics study was performed to analyze the effects of vibrational excitation on the dynamics of the OH + NH2D gas-phase reaction, which are connected to issues such as bond and mode selectivity. This reaction can evolve along two channels: H-abstraction, H2O(ν) + NHD(ν); and D-abstraction, HOD(ν) + NH2(ν). Based on an analytical potential energy surface previously developed by our group, quasi-classical trajectory calculations and subsequent normal mode analysis were performed. While vibrational excitation of the NH-sym mode of NH2D slightly favours H-abstraction over the D-abstraction, vibrational excitation of the ND mode shows that there is no clear preference for the H- or D-abstraction. These results show that this reaction does not exhibit bond selectivity, suggesting a breakdown of the spectator model. For H-abstraction, vibrational excitation of the non-reactive ND mode is partially retained in the NHD product; and for D-abstraction, excitation of the non-reactive NH mode is also partially retained in the products, indicating that this reaction exhibits mode selectivity only partially. In sum, we rule out bond and mode selectivity for this reaction. All these results were interpreted on the basis of strong coupling between modes along the reaction path, a behaviour which seems to be more the general tendency than the exception in polyatomic reactions.

18.
J Phys Chem A ; 117(24): 5042-51, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23721321

RESUMEN

Issues such as mode selectivity and Polanyi rules are connected to the effects of vibrational and translational energy in dynamics studies. Using the heavy-light-heavy OH(ν) + NH3(ν) gas-phase reaction, these effects were analyzed by performing quasi-classical trajectory calculations, at low and high collision energies (3.0 and 10.0 kcal mol(-1)), based on an analytical potential energy surface developed by our group. While the independent vibrational excitation of the NH3(ν) modes increases the reactivity by a factor of ∼1.1-2.8 with respect to the vibrational ground-state at both collision energies, OH(ν) stretching acts as a spectator mode. With respect to mode selectivity, we find a different behavior for both reactants. Thus, while the OH(ν) vibrational excitation is maintained in the products, indicating a certain degree of mode selectivity, the vibrational excitation of the NH3(ν) modes is not retained in the products; furthermore, the independent excitation of the N-H asymmetric and symmetric stretch modes leads to similar reaction probabilities, indicating negligible mode selectivity. For this early transition state reaction, translational energy is more effective in driving the reaction than an equivalent amount of energy in vibration, thus extending the validity of Polanyi rules to this polyatomic system. Finally, these results were interpreted on the basis of the existence of little or negligible intramolecular vibrational redistribution in the reactants before collision, while the nonconservation of the zero-point energy has a strong influence.

19.
J Chem Phys ; 138(8): 084305, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23464149

RESUMEN

A full-dimensional analytical potential energy surface (PES) for the OH + NH3 → H2O + NH2 gas-phase reaction was developed based exclusively on high-level ab initio calculations. This reaction presents a very complicated shape with wells along the reaction path. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction path, and points on the reaction swath) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the coupled-cluster single double triple (CCSD(T)) = FULL/aug-cc-pVTZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000 K. The forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. However, the detailed analysis of the experimental equilibrium constants (from which the reverse rate constants are obtained) permits us to conclude that the experimental reverse rate constants must be re-evaluated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs), which were not included in the fitting procedure. The KIEs reproduce the values obtained from ab initio calculations in the common temperature range, although unfortunately no experimental information is available for comparison.

20.
J Chem Phys ; 138(21): 214306, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23758370

RESUMEN

To understand the reactivity and mechanism of the OH + NH3 → H2O + NH2 gas-phase reaction, which evolves through wells in the entrance and exit channels, a detailed dynamics study was carried out using quasi-classical trajectory calculations. The calculations were performed on an analytical potential energy surface (PES) recently developed by our group, PES-2012 [Monge-Palacios et al. J. Chem. Phys. 138, 084305 (2013)]. Most of the available energy appeared as H2O product vibrational energy (54%), reproducing the only experimental evidence, while only the 21% of this energy appeared as NH2 co-product vibrational energy. Both products appeared with cold and broad rotational distributions. The excitation function (constant collision energy in the range 1.0-14.0 kcal mol(-1)) increases smoothly with energy, contrasting with the only theoretical information (reduced-dimensional quantum scattering calculations based on a simplified PES), which presented a peak at low collision energies, related to quantized states. Analysis of the individual reactive trajectories showed that different mechanisms operate depending on the collision energy. Thus, while at high energies (E(coll) ≥ 6 kcal mol(-1)) all trajectories are direct, at low energies about 20%-30% of trajectories are indirect, i.e., with the mediation of a trapping complex, mainly in the product well. Finally, the effect of the zero-point energy constraint on the dynamics properties was analyzed.


Asunto(s)
Amoníaco/química , Hidrógeno/química , Hidróxidos/química , Teoría Cuántica , Termodinámica , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA