Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 620
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 174(2): 498-498.e1, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30007421

RESUMEN

mRNA modifications are defining a novel layer of complexity that is becoming widely appreciated as the epitranscriptome. This SnapShot summarizes the major breakthroughs in the burgeoning field of mRNA modifications to provide an overview of the molecular players involved and insights gained into the functional consequences of the growing number of modifications occurring within mRNA transcripts.


Asunto(s)
ARN Mensajero/metabolismo , Epigénesis Genética , Humanos , Procesamiento Postranscripcional del ARN , Transcriptoma
2.
Cell ; 166(3): 740-754, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27397505

RESUMEN

Systematic studies of cancer genomes have provided unprecedented insights into the molecular nature of cancer. Using this information to guide the development and application of therapies in the clinic is challenging. Here, we report how cancer-driven alterations identified in 11,289 tumors from 29 tissues (integrating somatic mutations, copy number alterations, DNA methylation, and gene expression) can be mapped onto 1,001 molecularly annotated human cancer cell lines and correlated with sensitivity to 265 drugs. We find that cell lines faithfully recapitulate oncogenic alterations identified in tumors, find that many of these associate with drug sensitivity/resistance, and highlight the importance of tissue lineage in mediating drug response. Logic-based modeling uncovers combinations of alterations that sensitize to drugs, while machine learning demonstrates the relative importance of different data types in predicting drug response. Our analysis and datasets are rich resources to link genotypes with cellular phenotypes and to identify therapeutic options for selected cancer sub-populations.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Análisis de Varianza , Línea Celular Tumoral , Metilación de ADN , Resistencia a Antineoplásicos/genética , Dosificación de Gen , Humanos , Modelos Genéticos , Mutación , Neoplasias/genética , Oncogenes , Medicina de Precisión
3.
CA Cancer J Clin ; 73(4): 376-424, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36512337

RESUMEN

Cancer development is driven by the accumulation of alterations affecting the structure and function of the genome. Whereas genetic changes disrupt the DNA sequence, epigenetic alterations contribute to the acquisition of hallmark tumor capabilities by regulating gene expression programs that promote tumorigenesis. Shifts in DNA methylation and histone mark patterns, the two main epigenetic modifications, orchestrate tumor progression and metastasis. These cancer-specific events have been exploited as useful tools for diagnosis, monitoring, and treatment choice to aid clinical decision making. Moreover, the reversibility of epigenetic modifications, in contrast to the irreversibility of genetic changes, has made the epigenetic machinery an attractive target for drug development. This review summarizes the most advanced applications of epigenetic biomarkers and epigenetic drugs in the clinical setting, highlighting commercially available DNA methylation-based assays and epigenetic drugs already approved by the US Food and Drug Administration.


Asunto(s)
Epigénesis Genética , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Metilación de ADN , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología
4.
Cell ; 161(4): 710-3, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25936836

RESUMEN

DNA N6-methyladenine (6mA) protects against restriction enzymes in bacteria. However, isolated reports have suggested additional activities and its presence in other organisms, such as unicellular eukaryotes. New data now find that 6mA may have a gene regulatory function in green alga, worm, and fly, suggesting m6A as a potential "epigenetic" mark.


Asunto(s)
Adenina/análogos & derivados , Metilación de ADN , Epigénesis Genética , Adenina/análisis , Adenina/metabolismo , Animales , Bacterias/genética , Regulación de la Expresión Génica , Análisis de Secuencia de ADN
5.
Trends Genet ; 39(1): 74-88, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36379743

RESUMEN

Cancer was initially considered to be an exclusively genetic disease, but an interplay of dysregulated genetic and epigenetic mechanisms is now known to contribute to the cancer phenotype. More recently, chemical modifications of RNA molecules - the so-called epitranscriptome - have been found to regulate various aspects of RNA function and homeostasis. Specific enzymes, known as RNA-modifying proteins (RMPs), are responsible for depositing, removing, and reading chemical modifications in RNA. Intensive investigations in the epitranscriptomic field in recent years, in conjunction with great technological advances, have revealed the critical role of RNA modifications in regulating numerous cellular pathways. Furthermore, growing evidence has revealed that RNA modification machinery is often altered in human cancers, highlighting the enormous potential of RMPs as pharmacological targets or diagnostic markers.


Asunto(s)
Neoplasias , ARN , Humanos , ARN/genética , ARN/metabolismo , Epigénesis Genética/genética , Neoplasias/genética , Neoplasias/metabolismo , Epigenómica
6.
Nucleic Acids Res ; 52(7): 3636-3653, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38321951

RESUMEN

MeCP2 is a general regulator of transcription involved in the repression/activation of genes depending on the local epigenetic context. It acts as a chromatin regulator and binds with exquisite specificity to gene promoters. The set of epigenetic marks recognized by MeCP2 has been already established (mainly, cytosine modifications in CpG and CpA), as well as many of the constituents of its interactome. We unveil a new set of interactions for MeCP2 with the four canonical nucleosomal histones. MeCP2 interacts with high affinity with H2A, H2B, H3 and H4. In addition, Rett syndrome associated mutations in MeCP2 and histone epigenetic marks modulate these interactions. Given the abundance and the structural/functional relevance of histones and their involvement in epigenetic regulation, this new set of interactions and its modulating elements provide a new addition to the 'alphabet' for this epigenetic reader.


Asunto(s)
Epigénesis Genética , Histonas , Proteína 2 de Unión a Metil-CpG , Nucleosomas , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Nucleosomas/metabolismo , Histonas/metabolismo , Humanos , Unión Proteica , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Mutación , Animales
7.
Nat Rev Genet ; 20(2): 109-127, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30479381

RESUMEN

Biomarker discovery and validation are necessary for improving the prediction of clinical outcomes and patient monitoring. Despite considerable interest in biomarker discovery and development, improvements in the range and quality of biomarkers are still needed. The main challenge is how to integrate preclinical data to obtain a reliable biomarker that can be measured with acceptable costs in routine clinical practice. Epigenetic alterations are already being incorporated as valuable candidates in the biomarker field. Furthermore, their reversible nature offers a promising opportunity to ameliorate disease symptoms by using epigenetic-based therapy. Thus, beyond helping to understand disease biology, clinical epigenetics is being incorporated into patient management in oncology, as well as being explored for clinical applicability for other human pathologies such as neurological and infectious diseases and immune system disorders.


Asunto(s)
Epigénesis Genética , Epigenómica , Enfermedades del Sistema Inmune , Infecciones , Enfermedades del Sistema Nervioso , Medicina de Precisión/métodos , Investigación Biomédica/métodos , Humanos , Enfermedades del Sistema Inmune/genética , Enfermedades del Sistema Inmune/metabolismo , Enfermedades del Sistema Inmune/terapia , Infecciones/genética , Infecciones/metabolismo , Infecciones/terapia , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/terapia
8.
Cancer Metastasis Rev ; 42(4): 1071-1112, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37369946

RESUMEN

Most of the cancer-associated mortality and morbidity can be attributed to metastasis. The role of epigenetic and epitranscriptomic alterations in cancer origin and progression has been extensively demonstrated during the last years. Both regulations share similar mechanisms driven by DNA or RNA modifiers, namely writers, readers, and erasers; enzymes responsible of respectively introducing, recognizing, or removing the epigenetic or epitranscriptomic modifications. Epigenetic regulation is achieved by DNA methylation, histone modifications, non-coding RNAs, chromatin accessibility, and enhancer reprogramming. In parallel, regulation at RNA level, named epitranscriptomic, is driven by a wide diversity of chemical modifications in mostly all RNA molecules. These two-layer regulatory mechanisms are finely controlled in normal tissue, and dysregulations are associated with every hallmark of human cancer. In this review, we provide an overview of the current state of knowledge regarding epigenetic and epitranscriptomic alterations governing tumor metastasis, and compare pathways regulated at DNA or RNA levels to shed light on a possible epi-crosstalk in cancer metastasis. A deeper understanding on these mechanisms could have important clinical implications for the prevention of advanced malignancies and the management of the disseminated diseases. Additionally, as these epi-alterations can potentially be reversed by small molecules or inhibitors against epi-modifiers, novel therapeutic alternatives could be envisioned.


Asunto(s)
Epigénesis Genética , Neoplasias , Humanos , Metilación de ADN , Neoplasias/patología , ARN/metabolismo , ADN/metabolismo
9.
Br J Haematol ; 204(5): 1838-1843, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471524

RESUMEN

Real-world data have revealed that a substantial portion of patients with myelodysplastic syndromes (MDS) does not respond to epigenetic therapy with hypomethylating agents (HMAs). The cellular and molecular reasons for this resistance to the demethylating agent and biomarkers that would be able to predict the treatment refractoriness are largely unknown. In this study, we shed light on this enigma by characterizing the epigenomic profiles of patients with MDS treated with azacitidine. Our approach provides a comprehensive view of the evolving DNA methylation architecture of the disease and holds great potential for advancing our understanding of MDS treatment responses to HMAs.


Asunto(s)
Azacitidina , Metilación de ADN , Síndromes Mielodisplásicos , Humanos , Azacitidina/uso terapéutico , Azacitidina/farmacología , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Estudios Retrospectivos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Antimetabolitos Antineoplásicos/uso terapéutico , Antimetabolitos Antineoplásicos/farmacología , Anciano de 80 o más Años , Epigénesis Genética/efectos de los fármacos , Resultado del Tratamiento
10.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35524475

RESUMEN

High-throughput genomic technologies are increasingly used in personalized cancer medicine. However, computational tools to maximize the use of scarce tissues combining distinct molecular layers are needed. Here we present a refined strategy, based on the R-package 'conumee', to better predict somatic copy number alterations (SCNA) from deoxyribonucleic acid (DNA) methylation arrays. Our approach, termed hereafter as 'conumee-KCN', improves SCNA prediction by incorporating tumor purity and dynamic thresholding. We trained our algorithm using paired DNA methylation and SNP Array 6.0 data from The Cancer Genome Atlas samples and confirmed its performance in cancer cell lines. Most importantly, the application of our approach in cancers of unknown primary identified amplified potentially actionable targets that were experimentally validated by Fluorescence in situ hybridization and immunostaining, reaching 100% specificity and 93.3% sensitivity.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias Primarias Desconocidas , ADN , Metilación de ADN , Humanos , Hibridación Fluorescente in Situ , Neoplasias Primarias Desconocidas/genética
11.
Ann Rheum Dis ; 83(7): 865-878, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38413168

RESUMEN

OBJECTIVES: Systemic lupus erythematosus (SLE) is characterised by systemic inflammation involving various immune cell types. Monocytes, pivotal in promoting and regulating inflammation in SLE, differentiate from classic monocytes into intermediate and non-classic monocytes, assuming diverse roles and changing their proportions in inflammation. In this study, we investigated the epigenetic and transcriptomic profiles of these and novel monocyte subsets in SLE in relation to activity and progression. METHODS: We obtained the DNA methylomes and transcriptomes of classic, intermediate, non-classic monocytes in patients with SLE (at first and follow-up visits) and healthy donors. We integrated these data with single-cell transcriptomics of SLE and healthy donors and interrogated their relationships with activity and progression. RESULTS: In addition to shared DNA methylation and transcriptomic alterations associated with a strong interferon signature, we identified monocyte subset-specific alterations, especially in DNA methylation, which reflect an impact of SLE on monocyte differentiation. SLE classic monocytes exhibited a proinflammatory profile and were primed for macrophage differentiation. SLE non-classic monocytes displayed a T cell differentiation-related phenotype, with Th17-regulating features. Changes in monocyte proportions, DNA methylation and expression occurred in relation to disease activity and involved the STAT pathway. Integration of bulk with single-cell RNA sequencing datasets revealed disease activity-dependent expansion of SLE-specific monocyte subsets, further supported the interferon signature for classic monocytes, and associated intermediate and non-classic populations with exacerbated complement activation. CONCLUSIONS: Disease activity in SLE drives a subversion of the epigenome and transcriptome programme in monocyte differentiation, impacting the function of different subsets and allowing to generate predictive methods for activity and progression.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Lupus Eritematoso Sistémico , Monocitos , Transcriptoma , Humanos , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Monocitos/metabolismo , Monocitos/inmunología , Femenino , Adulto , Masculino , Diferenciación Celular/genética , Persona de Mediana Edad , Estudios de Casos y Controles , Progresión de la Enfermedad
12.
J Neurol Neurosurg Psychiatry ; 95(7): 675-681, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38302433

RESUMEN

BACKGROUND: We aimed to investigate the association between DNA-methylation biological age (B-age) calculated as age acceleration (ageAcc) and key aneurysmal subarachnoid haemorrhage (aSAH) complications such as vasospasm, delayed cerebral ischaemia (DCI), poor outcome, and mortality. METHODS: We conducted a prospective study involving 277 patients with aSAH. B-age was determined in whole blood samples using five epigenetic clocks: Hannum's, Horvath's, Levine's and both versions of Zhang's clocks. Age acceleration was calculated as the residual obtained from regressing out the effect of C-age on the mismatch between C-age and B-age. We then tested the association between ageAcc and vasospasm, DCI and 12-month poor outcome (mRS 3-5) and mortality using linear regression models adjusted for confounders. RESULTS: Average C-age was 55.0 years, with 66.8% being female. Vasospasm occurred in 143 cases (51.6%), DCI in 70 (25.3%) and poor outcomes in 99 (35.7%), with a mortality rate of 20.6%. Lower ageAcc was linked to vasospasm in Horvath's and Levine's clocks, whereas increased ageAcc was associated with 12-month mortality in Hannum's clock. No significant differences in ageAcc were found for DCI or poor outcome at 12 months with other clocks. CONCLUSIONS: Our study indicates that B-age is independently associated with vasospasm and 12-month mortality in patients with aSAH. These findings underscore the potential role of epigenetics in understanding the pathophysiology of aSAH-related complications and outcomes.


Asunto(s)
Isquemia Encefálica , Metilación de ADN , Epigénesis Genética , Hemorragia Subaracnoidea , Vasoespasmo Intracraneal , Humanos , Hemorragia Subaracnoidea/genética , Hemorragia Subaracnoidea/complicaciones , Femenino , Masculino , Persona de Mediana Edad , Vasoespasmo Intracraneal/genética , Vasoespasmo Intracraneal/etiología , Estudios Prospectivos , Anciano , Isquemia Encefálica/genética , Adulto , Factores de Edad
13.
RNA Biol ; 21(1): 1-8, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38368619

RESUMEN

The identification of mechanisms capable of modifying genetic information by the addition of covalent RNA modifications distinguishes a level of complexity in gene expression which challenges key long-standing concepts of RNA biology. One of the current challenges of molecular biology is to properly understand the molecular functions of these RNA modifications, with more than 170 different ones having been identified so far. However, it has not been possible to map specific RNA modifications at a single-cell resolution until very recently. This review will highlight the technological advances in single-cell methodologies aimed at assessing and testing the biological function of certain RNA modifications, focusing on m6A. These advances have allowed for the development of novel strategies that enable the study of the 'epitranscriptome'. Nevertheless, despite all these improvements, many challenges and difficulties still need fixing for these techniques to work efficiently.


Asunto(s)
Biología Molecular , ARN , ARN/genética , ARN/metabolismo , Análisis de la Célula Individual , Procesamiento Postranscripcional del ARN , Transcriptoma
14.
Am J Respir Crit Care Med ; 208(3): 280-289, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37167549

RESUMEN

Rationale: Genome-wide association studies have identified common variants of lung cancer. However, the contribution of rare exome-wide variants, especially protein-coding variants, to cancers remains largely unexplored. Objectives: To evaluate the role of human exomes in genetic predisposition to lung cancer. Methods: We performed exome-wide association studies to detect the association of exomes with lung cancer in 30,312 patients and 652,902 control subjects. A scalable and accurate implementation of a generalized mixed model was used to detect the association signals for loss-of-function, missense, and synonymous variants and gene-level sets. Furthermore, we performed association and Bayesian colocalization analyses to evaluate their relationships with intermediate exposures. Measurements and Main Results: We systematically analyzed 216,739 single-nucleotide variants in the human exome. The loss-of-function variants exhibited the most notable effects on lung cancer risk. We identified four novel variants, including two missense variants (rs202197044TET3 [Pmeta (P values of meta-analysis) = 3.60 × 10-8] and rs202187871POT1 [Pmeta = 2.21 × 10-8]) and two synonymous variants (rs7447927TMEM173 [Pmeta = 1.32 × 10-9] and rs140624366ATRN [Pmeta = 2.97 × 10-9]). rs202197044TET3 was significantly associated with emphysema (odds ratio, 3.55; Pfdr = 0.015), whereas rs7447927POT1 was strongly associated with telomere length (ß = 1.08; Pfdr (FDR corrected P value) = 3.76 × 10-53). Functional evidence of expression of quantitative trait loci, splicing quantitative trait loci, and isoform expression was found for the four novel genes. Gene-level association tests identified several novel genes, including POT1 (protection of telomeres 1), RTEL1, BSG, and ZNF232. Conclusions: Our findings provide insights into the genetic architecture of human exomes and their role in lung cancer predisposition.


Asunto(s)
Exoma , Neoplasias Pulmonares , Humanos , Teorema de Bayes , Exoma/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Mutación de Línea Germinal/genética , Neoplasias Pulmonares/genética , Polimorfismo de Nucleótido Simple/genética
15.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34493659

RESUMEN

The MYC axis is disrupted in cancer, predominantly through activation of the MYC family oncogenes but also through inactivation of the MYC partner MAX or of the MAX partner MGA. MGA and MAX are also members of the polycomb repressive complex, ncPRC1.6. Here, we use genetically modified MAX-deficient small-cell lung cancer (SCLC) cells and carry out genome-wide and proteomics analyses to study the tumor suppressor function of MAX. We find that MAX mutant SCLCs have ASCL1 or NEUROD1 or combined ASCL1/NEUROD1 characteristics and lack MYC transcriptional activity. MAX restitution triggers prodifferentiation expression profiles that shift when MAX and oncogenic MYC are coexpressed. Although ncPRC1.6 can be formed, the lack of MAX restricts global MGA occupancy, selectively driving its recruitment toward E2F6-binding motifs. Conversely, MAX restitution enhances MGA occupancy to repress genes involved in different functions, including stem cell and DNA repair/replication. Collectively, these findings reveal that MAX mutant SCLCs have either ASCL1 or NEUROD1 or combined characteristics and are MYC independent and exhibit deficient ncPRC1.6-mediated gene repression.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , Proteínas del Grupo Polycomb/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Apoptosis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas del Grupo Polycomb/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Células Tumorales Cultivadas
16.
Alzheimers Dement ; 20(3): 1703-1715, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38088508

RESUMEN

INTRODUCTION: In 2013, the ALzheimer's and FAmilies (ALFA) project was established to investigate pathophysiological changes in preclinical Alzheimer's disease (AD), and to foster research on early detection and preventive interventions. METHODS: We conducted a comprehensive genetic characterization of ALFA participants with respect to neurodegenerative/cerebrovascular diseases, AD biomarkers, brain endophenotypes, risk factors and aging biomarkers. We placed particular emphasis on amyloid/tau status and assessed gender differences. Multiple polygenic risk scores were computed to capture different aspects of genetic predisposition. We additionally compared AD risk in ALFA to that across the full disease spectrum from the Alzheimer's Disease Neuroimaging Initiative (ADNI). RESULTS: Results show that the ALFA project has been successful at establishing a cohort of cognitively unimpaired individuals at high genetic predisposition of AD. DISCUSSION: It is, therefore, well-suited to study early pathophysiological changes in the preclinical AD continuum. Highlights Prevalence of ε4 carriers in ALzheimer and FAmilies (ALFA) is higher than in the general European population The ALFA study is highly enriched in Alzheimer's disease (AD) genetic risk factors beyond APOE AD genetic profiles in ALFA are similar to clinical groups along the continuum ALFA has succeeded in establishing a cohort of cognitively unimpaired individuals at high genetic AD risk ALFA is well suited to study pathogenic events/early pathophysiological changes in AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Perfil Genético , Biomarcadores , Predisposición Genética a la Enfermedad , Péptidos beta-Amiloides/genética , Proteínas tau/genética
17.
Semin Cancer Biol ; 83: 523-535, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33352265

RESUMEN

DNA methylation is a highly regulated process that has a critical role in human development and homeostatic control of the cell. The number of genes affected by anomalous DNA methylation in cancer-associated pathways is swiftly accelerating and with the advancement of molecular technologies, new layers of complexity are opening up and refining our strategies to combat cancer. DNA methylation profiling is an essential facet to understanding malignant transformation and is becoming an increasingly important tool for cancer diagnosis, prognosis and therapy monitoring. In this review, the role of DNA methylation in normal cellular function is discussed, as well as how epigenetic aberrations override normal cellular cues that lead to tumor initiation and propagation. The review also focuses on the latest advancements in DNA methylation profiling as a biomarker for early cancer detection, predicting patient clinical outcomes and responses to treatment and provides new insights into epigenetic-based therapy in clinical oncology.


Asunto(s)
Metilación de ADN , Neoplasias , Transformación Celular Neoplásica/genética , Epigénesis Genética , Epigenómica , Humanos , Oncología Médica , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia
18.
Mol Cancer ; 22(1): 83, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173708

RESUMEN

BACKGROUND: RNA modifications are important regulators of transcript activity and an increasingly emerging body of data suggests that the epitranscriptome and its associated enzymes are altered in human tumors. METHODS: Combining data mining and conventional experimental procedures, NSUN7 methylation and expression status was assessed in liver cancer cell lines and primary tumors. Loss-of-function and transfection-mediated recovery experiments coupled with RNA bisulfite sequencing and proteomics determined the activity of NSUN7 in downstream targets and drug sensitivity. RESULTS: In this study, the initial screening for genetic and epigenetic defects of 5-methylcytosine RNA methyltransferases in transformed cell lines, identified that the NOL1/NOP2/Sun domain family member 7 (NSUN7) undergoes promoter CpG island hypermethylation-associated with transcriptional silencing in a cancer-specific manner. NSUN7 epigenetic inactivation was common in liver malignant cells and we coupled bisulfite conversion of cellular RNA with next-generation sequencing (bsRNA-seq) to find the RNA targets of this poorly characterized putative RNA methyltransferase. Using knock-out and restoration-of-function models, we observed that the mRNA of the coiled-coil domain containing 9B (CCDC9B) gene required NSUN7-mediated methylation for transcript stability. Most importantly, proteomic analyses determined that CCDC9B loss impaired protein levels of its partner, the MYC-regulator Influenza Virus NS1A Binding Protein (IVNS1ABP), creating sensitivity to bromodomain inhibitors in liver cancer cells exhibiting NSUN7 epigenetic silencing. The DNA methylation-associated loss of NSUN7 was also observed in primary liver tumors where it was associated with poor overall survival. Interestingly, NSUN7 unmethylated status was enriched in the immune active subclass of liver tumors. CONCLUSION: The 5-methylcytosine RNA methyltransferase NSUN7 undergoes epigenetic inactivation in liver cancer that prevents correct mRNA methylation. Furthermore, NSUN7 DNA methylation-associated silencing is associated with clinical outcome and distinct therapeutic vulnerability.


Asunto(s)
Neoplasias Hepáticas , Metiltransferasas , Humanos , 5-Metilcitosina , Islas de CpG , Metilación de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteómica , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética
19.
Mol Cancer ; 22(1): 190, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017545

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive subtype that exhibits a high incidence of distant metastases and lacks targeted therapeutic options. Here we explored how the epigenome contributes to matrix metalloprotease (MMP) dysregulation impacting tumor invasion, which is the first step of the metastatic process. METHODS: We combined RNA expression and chromatin interaction data to identify insulator elements potentially associated with MMP gene expression and invasion. We employed CRISPR/Cas9 to disrupt the CCCTC-Binding Factor (CTCF) binding site on an insulator element downstream of the MMP8 gene (IE8) in two TNBC cellular models. We characterized these models by combining Hi-C, ATAC-seq, and RNA-seq with functional experiments to determine invasive ability. The potential of our findings to predict the progression of ductal carcinoma in situ (DCIS), was tested in data from clinical specimens. RESULTS: We explored the clinical relevance of an insulator element located within the Chr11q22.2 locus, downstream of the MMP8 gene (IE8). This regulatory element resulted in a topologically associating domain (TAD) boundary that isolated nine MMP genes into two anti-correlated expression clusters. This expression pattern was associated with worse relapse-free (HR = 1.57 [1.06 - 2.33]; p = 0.023) and overall (HR = 2.65 [1.31 - 5.37], p = 0.005) survival of TNBC patients. After CRISPR/Cas9-mediated disruption of IE8, cancer cells showed a switch in the MMP expression signature, specifically downregulating the pro-invasive MMP1 gene and upregulating the antitumorigenic MMP8 gene, resulting in reduced invasive ability and collagen degradation. We observed that the MMP expression pattern predicts DCIS that eventually progresses into invasive ductal carcinomas (AUC = 0.77, p < 0.01). CONCLUSION: Our study demonstrates how the activation of an IE near the MMP8 gene determines the regional transcriptional regulation of MMP genes with opposing functional activity, ultimately influencing the invasive properties of aggressive forms of breast cancer.


Asunto(s)
Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/patología , Cromatina , Metaloproteinasa 8 de la Matriz/genética , Neoplasias de la Mama Triple Negativas/genética , Recurrencia Local de Neoplasia/genética , Familia de Multigenes
20.
Trends Immunol ; 41(8): 676-691, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32622854

RESUMEN

Effective anticancer immunotherapy treatments constitute a qualitative leap in cancer management. Nonetheless, not all patients benefit from such therapies because they fail to achieve complete responses, suffer frequent relapses, or develop potentially life-threatening toxicities. Epigenomic signatures in immune and cancer cells appear to be accurate and promising predictors of patient outcomes with immunotherapy. In addition, combined treatments with epigenetic drugs can exploit the dynamic nature of epigenetic changes to potentially modulate responses to immunotherapy. Candidate epigenetic biomarkers may provide a rationale for patient stratification and precision medicine, thus maximizing the chances of treatment success while minimizing unwanted effects. We present a comprehensive up-to-date view of potential epigenetic biomarkers in immunotherapy and discuss their advantages over other indicators.


Asunto(s)
Epigenómica , Inmunoterapia , Neoplasias , Terapia Combinada , Epigénesis Genética , Epigenómica/tendencias , Humanos , Inmunoterapia/tendencias , Neoplasias/genética , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA