RESUMEN
When an influenza pandemic emerges, temporary school closures and antiviral treatment may slow virus spread, reduce the overall disease burden, and provide time for vaccine development, distribution, and administration while keeping a larger portion of the general population infection free. The impact of such measures will depend on the transmissibility and severity of the virus and the timing and extent of their implementation. To provide robust assessments of layered pandemic intervention strategies, the Centers for Disease Control and Prevention (CDC) funded a network of academic groups to build a framework for the development and comparison of multiple pandemic influenza models. Research teams from Columbia University, Imperial College London/Princeton University, Northeastern University, the University of Texas at Austin/Yale University, and the University of Virginia independently modeled three prescribed sets of pandemic influenza scenarios developed collaboratively by the CDC and network members. Results provided by the groups were aggregated into a mean-based ensemble. The ensemble and most component models agreed on the ranking of the most and least effective intervention strategies by impact but not on the magnitude of those impacts. In the scenarios evaluated, vaccination alone, due to the time needed for development, approval, and deployment, would not be expected to substantially reduce the numbers of illnesses, hospitalizations, and deaths that would occur. Only strategies that included early implementation of school closure were found to substantially mitigate early spread and allow time for vaccines to be developed and administered, especially under a highly transmissible pandemic scenario.
Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Preparaciones Farmacéuticas , Pandemias/prevención & control , Vacunas contra la Influenza/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéuticoRESUMEN
This paper describes an integrated, data-driven operational pipeline based on national agent-based models to support federal and state-level pandemic planning and response. The pipeline consists of (i) an automatic semantic-aware scheduling method that coordinates jobs across two separate high performance computing systems; (ii) a data pipeline to collect, integrate and organize national and county-level disaggregated data for initialization and post-simulation analysis; (iii) a digital twin of national social contact networks made up of 288 Million individuals and 12.6 Billion time-varying interactions covering the US states and DC; (iv) an extension of a parallel agent-based simulation model to study epidemic dynamics and associated interventions. This pipeline can run 400 replicates of national runs in less than 33 h, and reduces the need for human intervention, resulting in faster turnaround times and higher reliability and accuracy of the results. Scientifically, the work has led to significant advances in real-time epidemic sciences.
RESUMEN
We demonstrate a general method to analyze the sensitivity of attack rate in a network model of infectious disease epidemiology to the structure of the network. We use Moore and Shannon's "network reliability" statistic to measure the epidemic potential of a network. A number of networks are generated using exponential random graph models based on the properties of the contact network structure of one of the Add Health surveys. The expected number of infections on the original Add Health network is significantly different from that on any of the models derived from it. Because individual-level transmissibility and network structure are not separately identifiable parameters given population-level attack rate data it is possible to re-calibrate the transmissibility to fix this difference. However, the temporal behavior of the outbreak remains significantly different. Hence any estimates of the effectiveness of time dependent interventions on one network are unlikely to generalize to the other. Moreover, we show that in one case even a small perturbation to the network spoils the re-calibration. Unfortunately, the set of sufficient statistics for specifying a contact network model is not yet known. Until it is, estimates of the outcome of a dynamical process on a particular network obtained from simulations on a different network are not reliable.
Asunto(s)
Enfermedades Transmisibles/transmisión , Gráficos por Computador , Trazado de Contacto/métodos , Modelos Biológicos , Brotes de Enfermedades/prevención & control , Epidemias/estadística & datos numéricos , HumanosRESUMEN
The study objective is to estimate the epidemiological and economic impact of vaccine interventions during influenza pandemics in Chicago, and assist in vaccine intervention priorities. Scenarios of delay in vaccine introduction with limited vaccine efficacy and limited supplies are not unlikely in future influenza pandemics, as in the 2009 H1N1 influenza pandemic. We simulated influenza pandemics in Chicago using agent-based transmission dynamic modeling. Population was distributed among high-risk and non-high risk among 0-19, 20-64 and 65+ years subpopulations. Different attack rate scenarios for catastrophic (30.15%), strong (21.96%), and moderate (11.73%) influenza pandemics were compared against vaccine intervention scenarios, at 40% coverage, 40% efficacy, and unit cost of $28.62. Sensitivity analysis for vaccine compliance, vaccine efficacy and vaccine start date was also conducted. Vaccine prioritization criteria include risk of death, total deaths, net benefits, and return on investment. The risk of death is the highest among the high-risk 65+ years subpopulation in the catastrophic influenza pandemic, and highest among the high-risk 0-19 years subpopulation in the strong and moderate influenza pandemics. The proportion of total deaths and net benefits are the highest among the high-risk 20-64 years subpopulation in the catastrophic, strong and moderate influenza pandemics. The return on investment is the highest in the high-risk 0-19 years subpopulation in the catastrophic, strong and moderate influenza pandemics. Based on risk of death and return on investment, high-risk groups of the three age group subpopulations can be prioritized for vaccination, and the vaccine interventions are cost saving for all age and risk groups. The attack rates among the children are higher than among the adults and seniors in the catastrophic, strong, and moderate influenza pandemic scenarios, due to their larger social contact network and homophilous interactions in school. Based on return on investment and higher attack rates among children, we recommend prioritizing children (0-19 years) and seniors (65+ years) after high-risk groups for influenza vaccination during times of limited vaccine supplies. Based on risk of death, we recommend prioritizing seniors (65+ years) after high-risk groups for influenza vaccination during times of limited vaccine supplies.
Asunto(s)
Gripe Humana , Pandemias , Vacunación/estadística & datos numéricos , Adolescente , Adulto , Anciano , Chicago/epidemiología , Niño , Preescolar , Biología Computacional , Humanos , Lactante , Recién Nacido , Vacunas contra la Influenza , Gripe Humana/economía , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Persona de Mediana Edad , Modelos Estadísticos , Pandemias/prevención & control , Pandemias/estadística & datos numéricos , Adulto JovenRESUMEN
Differentiation of CD4+ T cells into effector or regulatory phenotypes is tightly controlled by the cytokine milieu, complex intracellular signaling networks and numerous transcriptional regulators. We combined experimental approaches and computational modeling to investigate the mechanisms controlling differentiation and plasticity of CD4+ T cells in the gut of mice. Our computational model encompasses the major intracellular pathways involved in CD4+ T cell differentiation into T helper 1 (Th1), Th2, Th17 and induced regulatory T cells (iTreg). Our modeling efforts predicted a critical role for peroxisome proliferator-activated receptor gamma (PPARγ) in modulating plasticity between Th17 and iTreg cells. PPARγ regulates differentiation, activation and cytokine production, thereby controlling the induction of effector and regulatory responses, and is a promising therapeutic target for dysregulated immune responses and inflammation. Our modeling efforts predict that following PPARγ activation, Th17 cells undergo phenotype switch and become iTreg cells. This prediction was validated by results of adoptive transfer studies showing an increase of colonic iTreg and a decrease of Th17 cells in the gut mucosa of mice with colitis following pharmacological activation of PPARγ. Deletion of PPARγ in CD4+ T cells impaired mucosal iTreg and enhanced colitogenic Th17 responses in mice with CD4+ T cell-induced colitis. Thus, for the first time we provide novel molecular evidence in vivo demonstrating that PPARγ in addition to regulating CD4+ T cell differentiation also plays a major role controlling Th17 and iTreg plasticity in the gut mucosa.
Asunto(s)
Linfocitos T CD4-Positivos/citología , Biología Computacional/métodos , Citocinas/metabolismo , Animales , Diferenciación Celular , Simulación por Computador , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Inmunofenotipificación , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Modelos Moleculares , Modelos Teóricos , PPAR gamma/metabolismo , Fenotipo , Transducción de Señal , Células Th17/metabolismoRESUMEN
A fundamental challenge for personalized medicine is to capture enough of the complexity of an individual patient to determine an optimal way to keep them healthy or restore their health. This will require personalized computational models of sufficient resolution and with enough mechanistic information to provide actionable information to the clinician. Such personalized models are increasingly referred to as medical digital twins. Digital twin technology for health applications is still in its infancy, and extensive research and development is required. This article focuses on several projects in different stages of development that can lead to specific-and practical-medical digital twins or digital twin modeling platforms. It emerged from a two-day forum on problems related to medical digital twins, particularly those involving an immune system component. Open access video recordings of the forum discussions are available.
RESUMEN
Medical digital twins are computational models of human biology relevant to a given medical condition, which are tailored to an individual patient, thereby predicting the course of disease and individualized treatments, an important goal of personalized medicine. The immune system, which has a central role in many diseases, is highly heterogeneous between individuals, and thus poses a major challenge for this technology. In February 2023, an international group of experts convened for two days to discuss these challenges related to immune digital twins. The group consisted of clinicians, immunologists, biologists, and mathematical modelers, representative of the interdisciplinary nature of medical digital twin development. A video recording of the entire event is available. This paper presents a synopsis of the discussions, brief descriptions of ongoing digital twin projects at different stages of progress. It also proposes a 5-year action plan for further developing this technology. The main recommendations are to identify and pursue a small number of promising use cases, to develop stimulation-specific assays of immune function in a clinical setting, and to develop a database of existing computational immune models, as well as advanced modeling technology and infrastructure.
Asunto(s)
Medicina de Precisión , Humanos , Bases de Datos FactualesRESUMEN
BACKGROUND: Detecting outbreaks is a crucial task for public health officials, yet gaps remain in the systematic evaluation of outbreak detection protocols. The authors' objectives were to design, implement, and test a flexible methodology for generating detailed synthetic surveillance data that provides realistic geographical and temporal clustering of cases and use to evaluate outbreak detection protocols. METHODS: A detailed representation of the Boston area was constructed, based on data about individuals, locations, and activity patterns. Influenza-like illness (ILI) transmission was simulated, producing 100 years of in silico ILI data. Six different surveillance systems were designed and developed using gathered cases from the simulated disease data. Performance was measured by inserting test outbreaks into the surveillance streams and analyzing the likelihood and timeliness of detection. RESULTS: Detection of outbreaks varied from 21% to 95%. Increased coverage did not linearly improve detection probability for all surveillance systems. Relaxing the decision threshold for signaling outbreaks greatly increased false-positives, improved outbreak detection slightly, and led to earlier outbreak detection. CONCLUSIONS: Geographical distribution can be more important than coverage level. Detailed simulations of infectious disease transmission can be configured to represent nearly any conceivable scenario. They are a powerful tool for evaluating the performance of surveillance systems and methods used for outbreak detection.
Asunto(s)
Simulación por Computador , Brotes de Enfermedades/estadística & datos numéricos , Boston , Humanos , Gripe Humana/epidemiología , Vigilancia de la PoblaciónRESUMEN
Disasters affect a society at many levels. Simulation-based studies often evaluate the effectiveness of 1 or 2 response policies in isolation and are unable to represent impact of the policies to coevolve with others. Similarly, most in-depth analyses are based on a static assessment of the "aftermath" rather than capturing dynamics. We have developed a data-centric simulation environment for applying a systems approach to a dynamic analysis of complex combinations of disaster responses. We analyze an improvised nuclear detonation in Washington, District of Columbia, with this environment. The simulated blast affects the transportation system, communications infrastructure, electrical power system, behaviors and motivations of population, and health status of survivors. The effectiveness of partially restoring wireless communications capacity is analyzed in concert with a range of other disaster response policies. Despite providing a limited increase in cell phone communication, overall health was improved.
Asunto(s)
Simulación por Computador , Planificación en Desastres/organización & administración , Política de Salud , Bases de Datos Factuales , District of Columbia , Explosiones , HumanosRESUMEN
OBJECTIVES: We applied social network analyses to determine how hospitals within Orange County, California, are interconnected by patient sharing, a system which may have numerous public health implications. METHODS: Our analyses considered 2 general patient-sharing networks: uninterrupted patient sharing (UPS; i.e., direct interhospital transfers) and total patient sharing (TPS; i.e., all interhospital patient sharing, including patients with intervening nonhospital stays). We considered these networks at 3 thresholds of patient sharing: at least 1, at least 10, and at least 100 patients shared. RESULTS: Geographically proximate hospitals were somewhat more likely to share patients, but many hospitals shared patients with distant hospitals. Number of patient admissions and percentage of cancer patients were associated with greater connectivity across the system. The TPS network revealed numerous connections not seen in the UPS network, meaning that direct transfers only accounted for a fraction of total patient sharing. CONCLUSIONS: Our analysis demonstrated that Orange County's 32 hospitals were highly and heterogeneously interconnected by patient sharing. Different hospital populations had different levels of influence over the patient-sharing network.
Asunto(s)
Hospitales de Condado/estadística & datos numéricos , Relaciones Interinstitucionales , Transferencia de Pacientes/estadística & datos numéricos , California , Estudios de Evaluación como Asunto , Humanos , Alta del PacienteRESUMEN
Planning a response to an outbreak of a pandemic strain of influenza is a high public health priority. Three research groups using different individual-based, stochastic simulation models have examined the consequences of intervention strategies chosen in consultation with U.S. public health workers. The first goal is to simulate the effectiveness of a set of potentially feasible intervention strategies. Combinations called targeted layered containment (TLC) of influenza antiviral treatment and prophylaxis and nonpharmaceutical interventions of quarantine, isolation, school closure, community social distancing, and workplace social distancing are considered. The second goal is to examine the robustness of the results to model assumptions. The comparisons focus on a pandemic outbreak in a population similar to that of Chicago, with approximately 8.6 million people. The simulations suggest that at the expected transmissibility of a pandemic strain, timely implementation of a combination of targeted household antiviral prophylaxis, and social distancing measures could substantially lower the illness attack rate before a highly efficacious vaccine could become available. Timely initiation of measures and school closure play important roles. Because of the current lack of data on which to base such models, further field research is recommended to learn more about the sources of transmission and the effectiveness of social distancing measures in reducing influenza transmission.
Asunto(s)
Brotes de Enfermedades/prevención & control , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Modelos Biológicos , Chicago , Simulación por Computador , Conducta Cooperativa , Humanos , Gripe Humana/transmisión , Aislamiento de Pacientes , Estados UnidosRESUMEN
This research measures the epidemiological and economic impact of COVID-19 spread in the US under different mitigation scenarios, comprising of non-pharmaceutical interventions. A detailed disease model of COVID-19 is combined with a model of the US economy to estimate the direct impact of labor supply shock to each sector arising from morbidity, mortality, and lockdown, as well as the indirect impact caused by the interdependencies between sectors. During a lockdown, estimates of jobs that are workable from home in each sector are used to modify the shock to labor supply. Results show trade-offs between economic losses, and lives saved and infections averted are non-linear in compliance to social distancing and the duration of the lockdown. Sectors that are worst hit are not the labor-intensive sectors such as the Agriculture sector and the Construction sector, but the ones with high valued jobs such as the Professional Services, even after the teleworkability of jobs is accounted for. Additionally, the findings show that a low compliance to interventions can be overcome by a longer shutdown period and vice versa to arrive at similar epidemiological impact but their net effect on economic loss depends on the interplay between the marginal gains from averting infections and deaths, versus the marginal loss from having healthy workers stay at home during the shutdown.
Asunto(s)
COVID-19/epidemiología , Agricultura/economía , COVID-19/economía , COVID-19/prevención & control , Control de Enfermedades Transmisibles , Industria de la Construcción/economía , Empleo , Humanos , Industrias/economía , Modelos Económicos , SARS-CoV-2/aislamiento & purificación , Teletrabajo , Estados Unidos/epidemiologíaRESUMEN
We study allocation of COVID-19 vaccines to individuals based on the structural properties of their underlying social contact network. Even optimistic estimates suggest that most countries will likely take 6 to 24 months to vaccinate their citizens. These time estimates and the emergence of new viral strains urge us to find quick and effective ways to allocate the vaccines and contain the pandemic. While current approaches use combinations of age-based and occupation-based prioritizations, our strategy marks a departure from such largely aggregate vaccine allocation strategies. We propose a novel approach motivated by recent advances in (i) science of real-world networks that point to efficacy of certain vaccination strategies and (ii) digital technologies that improve our ability to estimate some of these structural properties. Using a realistic representation of a social contact network for the Commonwealth of Virginia, combined with accurate surveillance data on spatiotemporal cases and currently accepted models of within- and between-host disease dynamics, we study how a limited number of vaccine doses can be strategically distributed to individuals to reduce the overall burden of the pandemic. We show that allocation of vaccines based on individuals' degree (number of social contacts) and total social proximity time is significantly more effective than the currently used age-based allocation strategy in terms of number of infections, hospitalizations and deaths. Our results suggest that in just two months, by March 31, 2021, compared to age-based allocation, the proposed degree-based strategy can result in reducing an additional 56-110k infections, 3.2- 5.4k hospitalizations, and 700-900 deaths just in the Commonwealth of Virginia. Extrapolating these results for the entire US, this strategy can lead to 3-6 million fewer infections, 181-306k fewer hospitalizations, and 51-62k fewer deaths compared to age-based allocation. The overall strategy is robust even: (i) if the social contacts are not estimated correctly; (ii) if the vaccine efficacy is lower than expected or only a single dose is given; (iii) if there is a delay in vaccine production and deployment; and (iv) whether or not non-pharmaceutical interventions continue as vaccines are deployed. For reasons of implementability, we have used degree, which is a simple structural measure and can be easily estimated using several methods, including the digital technology available today. These results are significant, especially for resource-poor countries, where vaccines are less available, have lower efficacy, and are more slowly distributed.
RESUMEN
Inflammatory bowel disease (IBD) is an immunoinflammatory illness of the gut initiated by an immune response to bacteria in the microflora. The resulting immunopathogenesis leads to lesions in epithelial lining of the colon through which bacteria may infiltrate the tissue causing recurring bouts of diarrhea, rectal bleeding, and malnutrition. In healthy individuals such immunopathogenesis is avoided by the presence of regulatory cells that inhibit the inflammatory pathway. Highly relevant to the search for treatment strategies is the identification of components of the inflammatory pathway that allow regulatory mechanisms to be overridden and immunopathogenesis to proceed. In vitro techniques have identified cellular interactions involved in inflammation-regulation crosstalk. However, tracing immunological mechanisms discovered at the cellular level confidently back to an in vivo context of multiple, simultaneous interactions has met limited success. To explore the impact of specific interactions, we have constructed a system of 29 ordinary differential equations representing different phenotypes of T-cells, macrophages, dendritic cells, and epithelial cells as they move and interact with bacteria in the lumen, lamina propria, and lymphoid tissue of the colon. Simulations revealed the positive inflammatory feedback loop formed by inflammatory M1 macrophage activation of T-cells as a driving force underlying the immunopathology of IBD. Furthermore, strategies that remove M1 from the site of infection, by either (i) increasing its potential to switch to a regulatory M2 phenotype or (ii) increasing the rate of reversion (for M1 and M2 alike) to a resting state, cease immunopathogenesis even as bacteria are eliminated by other inflammatory cells. Based on these results, we identify macrophages and their mechanisms of plasticity as key targets for mucosal inflammation intervention strategies. In addition, we propose that the primary mechanism behind the association of PPARgamma mutation with IBD is its ability to mediate the M1 to M2 switch.
Asunto(s)
Colon/patología , Inflamación/inmunología , Enfermedades Inflamatorias del Intestino/patología , Células Dendríticas , Células Epiteliales , Humanos , Enfermedades Inflamatorias del Intestino/inmunología , Macrófagos , Modelos Biológicos , PPAR gamma/genética , Linfocitos TRESUMEN
Most mathematical models for the spread of disease use differential equations based on uniform mixing assumptions or ad hoc models for the contact process. Here we explore the use of dynamic bipartite graphs to model the physical contact patterns that result from movements of individuals between specific locations. The graphs are generated by large-scale individual-based urban traffic simulations built on actual census, land-use and population-mobility data. We find that the contact network among people is a strongly connected small-world-like graph with a well-defined scale for the degree distribution. However, the locations graph is scale-free, which allows highly efficient outbreak detection by placing sensors in the hubs of the locations network. Within this large-scale simulation framework, we then analyse the relative merits of several proposed mitigation strategies for smallpox spread. Our results suggest that outbreaks can be contained by a strategy of targeted vaccination combined with early detection without resorting to mass vaccination of a population.
Asunto(s)
Brotes de Enfermedades/prevención & control , Modelos Biológicos , Viruela/prevención & control , Viruela/transmisión , Salud Urbana , Población Urbana , Trazado de Contacto , Brotes de Enfermedades/estadística & datos numéricos , Humanos , Viruela/diagnóstico , Viruela/epidemiología , Vacuna contra Viruela , Factores de Tiempo , Vacunación/métodosRESUMEN
This research measures the epidemiological and economic impact of COVID-19 spread in the US under different mitigation scenarios, comprising of non-pharmaceutical interventions. A detailed disease model of COVID-19 is combined with a model of the US economy to estimate the direct impact of labor supply shock to each sector arising from morbidity, mortality, and lock down, as well as the indirect impact caused by the interdependencies between sectors. During a lockdown, estimates of jobs that are workable from home in each sector are used to modify the shock to labor supply. Results show trade-offs between economic losses, and lives saved and infections averted are non-linear in compliance to social distancing and the duration of lockdown. Sectors that are worst hit are not the labor-intensive sectors such as Agriculture and Construction, but the ones with high valued jobs such as Professional Services, even after the teleworkability of jobs is accounted for. Additionally, the findings show that a low compliance to interventions can be overcome by a longer shutdown period and vice versa to arrive at similar epidemiological impact but their net effect on economic loss depends on the interplay between the marginal gains from averting infections and deaths, versus the marginal loss from having healthy workers stay at home during the shutdown.
RESUMEN
We use an individual based model and national level epidemic simulations to estimate the medical costs of keeping the US economy open during COVID-19 pandemic under different counterfactual scenarios. We model an unmitigated scenario and 12 mitigation scenarios which differ in compliance behavior to social distancing strategies and in the duration of the stay-home order. Under each scenario we estimate the number of people who are likely to get infected and require medical attention, hospitalization, and ventilators. Given the per capita medical cost for each of these health states, we compute the total medical costs for each scenario and show the tradeoffs between deaths, costs, infections, compliance and the duration of stay-home order. We also consider the hospital bed capacity of each Hospital Referral Region (HRR) in the US to estimate the deficit in beds each HRR will likely encounter given the demand for hospital beds. We consider a case where HRRs share hospital beds among the neighboring HRRs during a surge in demand beyond the available beds and the impact it has in controlling additional deaths.
Asunto(s)
Infecciones por Coronavirus/economía , Costos de la Atención en Salud/estadística & datos numéricos , Pandemias/economía , Neumonía Viral/economía , COVID-19 , Creación de Capacidad/economía , Creación de Capacidad/estadística & datos numéricos , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/terapia , Instituciones de Salud/economía , Instituciones de Salud/estadística & datos numéricos , Humanos , Control de Infecciones/economía , Control de Infecciones/estadística & datos numéricos , Modelos Estadísticos , Neumonía Viral/epidemiología , Neumonía Viral/terapia , Estados UnidosRESUMEN
We use an individual based model and national level epidemic simulations to estimate the medical costs of keeping the US economy open during COVID-19 pandemic under different counterfactual scenarios. We model an unmitigated scenario and 12 mitigation scenarios which differ in compliance behavior to social distancing strategies and to the duration of the stay-home order. Under each scenario we estimate the number of people who are likely to get infected and require medical attention, hospitalization, and ventilators. Given the per capita medical cost for each of these health states, we compute the total medical costs for each scenario and show the tradeoffs between deaths, costs, infections, compliance and the duration of stay-home order. We also consider the hospital bed capacity of each Hospital Referral Region (HRR) in the US to estimate the deficit in beds each HRR will likely encounter given the demand for hospital beds. We consider a case where HRRs share hospital beds among the neighboring HRRs during a surge in demand beyond the available beds and the impact it has in controlling additional deaths.