Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant Cell Environ ; 47(5): 1701-1715, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38294051

RESUMEN

Leaf gas exchange measurements are an important tool for inferring a plant's photosynthetic biochemistry. In most cases, the responses of photosynthetic CO2 assimilation to variable intercellular CO2 concentrations (A/Ci response curves) are used to model the maximum (potential) rate of carboxylation by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, Vcmax) and the rate of photosynthetic electron transport at a given incident photosynthetically active radiation flux density (PAR; JPAR). The standard Farquhar-von Caemmerer-Berry model is often used with default parameters of Rubisco kinetic values and mesophyll conductance to CO2 (gm) derived from tobacco that may be inapplicable across species. To study the significance of using such parameters for other species, here we measured the temperature responses of key in vitro Rubisco catalytic properties and gm in cotton (Gossypium hirsutum cv. Sicot 71) and derived Vcmax and J2000 (JPAR at 2000 µmol m-2 s-1 PAR) from cotton A/Ci curves incrementally measured at 15°C-40°C using cotton and other species-specific sets of input parameters with our new automated fitting R package 'OptiFitACi'. Notably, parameterisation by a set of tobacco parameters produced unrealistic J2000:Vcmax ratio of <1 at 25°C, two- to three-fold higher estimates of Vcmax above 15°C, up to 2.3-fold higher estimates of J2000 and more variable estimates of Vcmax and J2000, for our cotton data compared to model parameterisation with cotton-derived values. We determined that errors arise when using a gm,25 of 2.3 mol m-2 s-1 MPa-1 or less and Rubisco CO2-affinities in 21% O2 (KC 21%O2) at 25°C outside the range of 46-63 Pa to model A/Ci responses in cotton. We show how the A/Ci modelling capabilities of 'OptiFitACi' serves as a robust, user-friendly, and flexible extension of 'plantecophys' by providing simplified temperature-sensitivity and species-specificity parameterisation capabilities to reduce variability when modelling Vcmax and J2000.


Asunto(s)
Gossypium , Ribulosa-Bifosfato Carboxilasa , Gossypium/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Dióxido de Carbono , Temperatura , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo
2.
New Phytol ; 237(1): 60-77, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36251512

RESUMEN

The rate with which crop yields per hectare increase each year is plateauing at the same time that human population growth and other factors increase food demand. Increasing yield potential ( Y p ) of crops is vital to address these challenges. In this review, we explore a component of Y p that has yet to be optimised - that being improvements in the efficiency with which light energy is converted into biomass ( ε c ) via modifications to CO2 fixed per unit quantum of light (α), efficiency of respiratory ATP production ( ε prod ) and efficiency of ATP use ( ε use ). For α, targets include changes in photoprotective machinery, ribulose bisphosphate carboxylase/oxygenase kinetics and photorespiratory pathways. There is also potential for ε prod to be increased via targeted changes to the expression of the alternative oxidase and mitochondrial uncoupling pathways. Similarly, there are possibilities to improve ε use via changes to the ATP costs of phloem loading, nutrient uptake, futile cycles and/or protein/membrane turnover. Recently developed high-throughput measurements of respiration can serve as a proxy for the cumulative energy cost of these processes. There are thus exciting opportunities to use our growing knowledge of factors influencing the efficiency of photosynthesis and respiration to create a step-change in yield potential of globally important crops.


Asunto(s)
Dióxido de Carbono , Productos Agrícolas , Citocromo P-450 CYP2B1 , Adenosina Trifosfato/metabolismo , Dióxido de Carbono/metabolismo , Productos Agrícolas/fisiología , Citocromo P-450 CYP2B1/metabolismo , Fotosíntesis , Ribulosa-Bifosfato Carboxilasa/metabolismo
3.
Plant Cell Environ ; 46(1): 23-44, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36200623

RESUMEN

Photosynthetic manipulation provides new opportunities for enhancing crop yield. However, understanding and quantifying the importance of individual and multiple manipulations on the seasonal biomass growth and yield performance of target crops across variable production environments is limited. Using a state-of-the-art cross-scale model in the APSIM platform we predicted the impact of altering photosynthesis on the enzyme-limited (Ac ) and electron transport-limited (Aj ) rates, seasonal dynamics in canopy photosynthesis, biomass growth, and yield formation via large multiyear-by-location crop growth simulations. A broad list of promising strategies to improve photosynthesis for C3 wheat and C4 sorghum were simulated. In the top decile of seasonal outcomes, yield gains were predicted to be modest, ranging between 0% and 8%, depending on the manipulation and crop type. We report how photosynthetic enhancement can affect the timing and severity of water and nitrogen stress on the growing crop, resulting in nonintuitive seasonal crop dynamics and yield outcomes. We predicted that strategies enhancing Ac alone generate more consistent but smaller yield gains across all water and nitrogen environments, Aj enhancement alone generates larger gains but is undesirable in more marginal environments. Large increases in both Ac and Aj generate the highest gains across all environments. Yield outcomes of the tested manipulation strategies were predicted and compared for realistic Australian wheat and sorghum production. This study uniquely unpacks complex cross-scale interactions between photosynthesis and seasonal crop dynamics and improves understanding and quantification of the potential impact of photosynthesis traits (or lack of it) for crop improvement research.


Asunto(s)
Nitrógeno , Agua , Australia
4.
New Phytol ; 236(2): 357-368, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35801854

RESUMEN

Mesophyll conductance (gm ) limits photosynthesis by restricting CO2 diffusion between the substomatal cavities and chloroplasts. Although it is known that gm is determined by both leaf anatomical and biochemical traits, their relative contribution across plant functional types (PFTs) is still unclear. We compiled a dataset of gm measurements and concomitant leaf traits in unstressed plants comprising 563 studies and 617 species from all major PFTs. We investigated to what extent gm limits photosynthesis across PFTs, how gm relates to structural, anatomical, biochemical, and physiological leaf properties, and whether these relationships differ among PFTs. We found that gm imposes a significant limitation to photosynthesis in all C3 PFTs, ranging from 10-30% in most herbaceous annuals to 25-50% in woody evergreens. Anatomical leaf traits explained a significant proportion of the variation in gm (R2 > 0.3) in all PFTs except annual herbs, in which gm is more strongly related to biochemical factors associated with leaf nitrogen and potassium content. Our results underline the need to elucidate mechanisms underlying the global variability of gm . We emphasise the underestimated potential of gm for improving photosynthesis in crops and identify modifications in leaf biochemistry as the most promising pathway for increasing gm in these species.


Asunto(s)
Dióxido de Carbono , Células del Mesófilo , Dióxido de Carbono/metabolismo , Células del Mesófilo/metabolismo , Nitrógeno/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Plantas/metabolismo , Potasio/metabolismo
5.
Plant Physiol ; 185(1): 146-160, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33631811

RESUMEN

The dynamics of leaf photosynthesis in fluctuating light affects carbon gain by plants. Mesophyll conductance (gm) limits CO2 assimilation rate (A) under the steady state, but the extent of this limitation under non-steady-state conditions is unknown. In the present study, we aimed to characterize the dynamics of gm and the limitations to A imposed by gas diffusional and biochemical processes under fluctuating light. The induction responses of A, stomatal conductance (gs), gm, and the maximum rate of RuBP carboxylation (Vcmax) or electron transport (J) were investigated in Arabidopsis (Arabidopsis thaliana (L.)) and tobacco (Nicotiana tabacum L.). We first characterized gm induction after a change from darkness to light. Each limitation to A imposed by gm, gs and Vcmax or J was significant during induction, indicating that gas diffusional and biochemical processes limit photosynthesis. Initially, gs imposed the greatest limitation to A, showing the slowest response under high light after long and short periods of darkness, assuming RuBP-carboxylation limitation. However, if RuBP-regeneration limitation was assumed, then J imposed the greatest limitation. gm did not vary much following short interruptions to light. The limitation to A imposed by gm was the smallest of all the limitations for most of the induction phase. This suggests that altering induction kinetics of mesophyll conductance would have little impact on A following a change in light. To enhance the carbon gain by plants under naturally dynamic light environments, attention should therefore be focused on faster stomatal opening or activation of electron transport.


Asunto(s)
Adaptación Ocular/fisiología , Arabidopsis/fisiología , Transporte de Electrón/fisiología , Células del Mesófilo/fisiología , Nicotiana/fisiología , Fotosíntesis/fisiología , Estomas de Plantas/fisiología , Oscuridad
6.
J Exp Bot ; 73(10): 3221-3237, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35271722

RESUMEN

Recognition of the untapped potential of photosynthesis to improve crop yields has spurred research to identify targets for breeding. The CO2-fixing enzyme Rubisco is characterized by a number of inefficiencies, and frequently limits carbon assimilation at the top of the canopy, representing a clear target for wheat improvement. Two bread wheat lines with similar genetic backgrounds and contrasting in vivo maximum carboxylation activity of Rubisco per unit leaf nitrogen (Vc,max,25/Narea) determined using high-throughput phenotyping methods were selected for detailed study from a panel of 80 spring wheat lines. Detailed phenotyping of photosynthetic traits in the two lines using glasshouse-grown plants showed no difference in Vc,max,25/Narea determined directly via in vivo and in vitro methods. Detailed phenotyping of glasshouse-grown plants of the 80 wheat lines also showed no correlation between photosynthetic traits measured via high-throughput phenotyping of field-grown plants. Our findings suggest that the complex interplay between traits determining crop productivity and the dynamic environments experienced by field-grown plants needs to be considered in designing strategies for effective wheat crop yield improvement when breeding for particular environments.


Asunto(s)
Ribulosa-Bifosfato Carboxilasa , Triticum , Variación Biológica Poblacional , Fotosíntesis , Fitomejoramiento , Ribulosa-Bifosfato Carboxilasa/metabolismo , Triticum/genética , Triticum/metabolismo
7.
J Exp Bot ; 73(11): 3625-3636, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35184158

RESUMEN

In plants with C3 photosynthesis, increasing the diffusion conductance for CO2 from the substomatal cavity to chloroplast stroma (mesophyll conductance) can improve the efficiencies of both CO2 assimilation and photosynthetic water use. In the diffusion pathway from substomatal cavity to chloroplast stroma, the plasmalemma and chloroplast envelope membranes impose a considerable barrier to CO2 diffusion, limiting photosynthetic efficiency. In an attempt to improve membrane permeability to CO2, and increase photosynthesis in tobacco, we generated transgenic lines in Nicotiana tabacum L. cv Petite Havana carrying either the Arabidopsis PIP1;2 (AtPIP1;2) or PIP1;4 (AtPIP1;4) gene driven by the constitutive dual 2x35S CMV promoter. From a collection of independent T0 transgenics, two T2 lines from each gene were characterized, with western blots confirming increased total aquaporin protein abundance in the AtPIP1;2 tobacco lines. Transient expression of AtPIP1;2-mGFP6 and AtPIP1;4-mGFP6 fusions in Nicotiana benthamiana identified that both AtPIP1;2 and AtPIP1;4 localize to the plasmalemma. Despite achieving ectopic production and correct localization, gas exchange measurements combined with carbon isotope discrimination measurements detected no increase in mesophyll conductance or CO2 assimilation rate in the tobacco lines expressing AtPIP. We discuss the complexities associated with trying to enhance gm through modified aquaporin activity.


Asunto(s)
Acuaporinas , Arabidopsis , Acuaporinas/genética , Acuaporinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Células del Mesófilo/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
8.
Plant Biotechnol J ; 19(8): 1537-1552, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33638599

RESUMEN

To feed an ever-increasing population we must leverage advances in genomics and phenotyping to harness the variation in wheat breeding populations for traits like photosynthetic capacity which remains unoptimized. Here we survey a diverse set of wheat germplasm containing elite, introgression and synthetic derivative lines uncovering previously uncharacterized variation. We demonstrate how strategic integration of exotic material alleviates the D genome genetic bottleneck in wheat, increasing SNP rate by 62% largely due to Ae. tauschii synthetic wheat donors. Across the panel, 67% of the Ae. tauschii donor genome is represented as introgressions in elite backgrounds. We show how observed genetic variation together with hyperspectral reflectance data can be used to identify candidate genes for traits relating to photosynthetic capacity using association analysis. This demonstrates the value of genomic methods in uncovering hidden variation in wheat and how that variation can assist breeding efforts and increase our understanding of complex traits.


Asunto(s)
Fitomejoramiento , Triticum , Variación Genética/genética , Fenotipo , Poaceae , Triticum/genética
9.
New Phytol ; 229(4): 1864-1876, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33135193

RESUMEN

A significant resistance to CO2 diffusion is imposed by mesophyll tissue inside leaves. Mesophyll resistance, rm (or its reciprocal, mesophyll conductance, gm ), reduces the rate at which Rubisco can fix CO2 , increasing the water and nitrogen costs of carbon acquisition. gm varies in proportion to the surface area of chloroplasts exposed to intercellular airspace per unit leaf area. It also depends on the thickness and effective porosity of the cell wall and the CO2 permeabilities of membranes. As no measurements exist for the effective porosity of mesophyll cell walls, and CO2 permeability values are too low to account for observed rates of CO2 assimilation, conclusions from modelling must be treated with caution. There is great variation in the mesophyll resistance per unit chloroplast area for a given cell wall thickness, which may reflect differences in effective porosity. While apparent gm can vary with CO2 and irradiance, the underlying conductance at the cellular level may remain unchanged. Dynamic changes in apparent gm arise for spatial reasons and because chloroplasts differ in their photosynthetic composition and operate in different light environments. Measurements of the temperature sensitivity of membrane CO2 permeability are urgently needed to explain variation in temperature responses of gm .


Asunto(s)
Dióxido de Carbono , Células del Mesófilo , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Fotosíntesis , Hojas de la Planta
10.
Plant Physiol ; 183(4): 1600-1611, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32518201

RESUMEN

It has been argued that accumulation of nonstructural carbohydrates triggers a decrease in Rubisco content, which downregulates photosynthesis. However, a decrease in the sink-source ratio in several plant species leads to a decrease in photosynthesis and increases in both structural and nonstructural carbohydrate content. Here, we tested whether increases in cell-wall materials, rather than starch content, impact directly on photosynthesis by decreasing mesophyll conductance. We measured various morphological, anatomical, and physiological traits in primary leaves of soybean (Glycine max) and French bean (Phaseolus vulgaris) grown under high- or low-nitrogen conditions. We removed other leaves 2 weeks after sowing to decrease the sink-source ratio and conducted measurements 0, 1, and 2 weeks after defoliation.


Asunto(s)
Glycine max/metabolismo , Glycine max/fisiología , Phaseolus/metabolismo , Phaseolus/fisiología , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología
11.
Photosynth Res ; 149(1-2): 253-258, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34319557

RESUMEN

To finish this special issue, some friends, colleagues and students of Prof. Chow (Emeritus Professor, the Research School of Biology, the Australian National University) have written small tributes to acknowledge not only his eminent career but to describe his wonderful personality.


Asunto(s)
Biofisica/historia , Docentes/historia , Fotosíntesis , Investigadores/historia , Adulto , Australia , China , Historia del Siglo XX , Humanos , Masculino , Persona de Mediana Edad
12.
J Exp Bot ; 72(4): 1271-1281, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33252664

RESUMEN

A growing number of leaf traits can be estimated from hyperspectral reflectance data. These include structural and compositional traits, such as leaf mass per area (LMA) and nitrogen and chlorophyll content, but also physiological traits such a Rubisco carboxylation activity, electron transport rate, and respiration rate. Since physiological traits vary with leaf temperature, how does this impact on predictions made from reflectance measurements? We investigated this with two wheat varieties, by repeatedly measuring each leaf through a sequence of temperatures imposed by varying the air temperature in a growth room. Leaf temperatures ranging from 20 °C to 35 °C did not alter the estimated Rubisco capacity normalized to 25 °C (Vcmax25), or chlorophyll or nitrogen contents per unit leaf area. Models estimating LMA and Vcmax25/N were both slightly influenced by leaf temperature: estimated LMA increased by 0.27% °C-1 and Vcmax25/N increased by 0.46% °C-1. A model estimating Rubisco activity closely followed variation associated with leaf temperature. Reflectance spectra change with leaf temperature and therefore contain a temperature signal.


Asunto(s)
Fotosíntesis , Triticum , Dióxido de Carbono , Clorofila , Nitrógeno , Hojas de la Planta , Temperatura
13.
BMC Plant Biol ; 20(1): 266, 2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32517797

RESUMEN

BACKGROUND: Cellular membranes are dynamic structures, continuously adjusting their composition, allowing plants to respond to developmental signals, stresses, and changing environments. To facilitate transmembrane transport of substrates, plant membranes are embedded with both active and passive transporters. Aquaporins (AQPs) constitute a major family of membrane spanning channel proteins that selectively facilitate the passive bidirectional passage of substrates across biological membranes at an astonishing 108 molecules per second. AQPs are the most diversified in the plant kingdom, comprising of five major subfamilies that differ in temporal and spatial gene expression, subcellular protein localisation, substrate specificity, and post-translational regulatory mechanisms; collectively providing a dynamic transportation network spanning the entire plant. Plant AQPs can transport a range of solutes essential for numerous plant processes including, water relations, growth and development, stress responses, root nutrient uptake, and photosynthesis. The ability to manipulate AQPs towards improving plant productivity, is reliant on expanding our insight into the diversity and functional roles of AQPs. RESULTS: We characterised the AQP family from Nicotiana tabacum (NtAQPs; tobacco), a popular model system capable of scaling from the laboratory to the field. Tobacco is closely related to major economic crops (e.g. tomato, potato, eggplant and peppers) and itself has new commercial applications. Tobacco harbours 76 AQPs making it the second largest characterised AQP family. These fall into five distinct subfamilies, for which we characterised phylogenetic relationships, gene structures, protein sequences, selectivity filter compositions, sub-cellular localisation, and tissue-specific expression. We also identified the AQPs from tobacco's parental genomes (N. sylvestris and N. tomentosiformis), allowing us to characterise the evolutionary history of the NtAQP family. Assigning orthology to tomato and potato AQPs allowed for cross-species comparisons of conservation in protein structures, gene expression, and potential physiological roles. CONCLUSIONS: This study provides a comprehensive characterisation of the tobacco AQP family, and strengthens the current knowledge of AQP biology. The refined gene/protein models, tissue-specific expression analysis, and cross-species comparisons, provide valuable insight into the evolutionary history and likely physiological roles of NtAQPs and their Solanaceae orthologs. Collectively, these results will support future functional studies and help transfer basic research to applied agriculture.


Asunto(s)
Acuaporinas/genética , Nicotiana/genética , Proteínas de Plantas/genética , Solanaceae/genética , Aminoácidos/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas/genética , Estudio de Asociación del Genoma Completo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Filogenia , Análisis de Secuencia de ADN , Solanaceae/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Nicotiana/metabolismo
14.
J Exp Bot ; 71(7): 2299-2311, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31565736

RESUMEN

One way to increase yield potential in wheat is screening for natural variation in photosynthesis. This study uses measured and modelled physiological parameters to explore genotypic diversity in photosynthetic capacity (Pc, Rubisco carboxylation capacity per unit leaf area at 25 °C) and efficiency (Peff, Pc per unit of leaf nitrogen) in wheat in relation to fertilizer, plant stage, and environment. Four experiments (Aus1, Aus2, Aus3, and Mex1) were carried out with diverse wheat collections to investigate genetic variation for Rubisco capacity (Vcmax25), electron transport rate (J), CO2 assimilation rate, stomatal conductance, and complementary plant functional traits: leaf nitrogen, leaf dry mass per unit area, and SPAD. Genotypes for Aus1 and Aus2 were grown in the glasshouse with two fertilizer levels. Genotypes for Aus3 and Mex1 experiments were grown in the field in Australia and Mexico, respectively. Results showed that Vcmax25 derived from gas exchange measurements is a robust parameter that does not depend on stomatal conductance and was positively correlated with Rubisco content measured in vitro. There was significant genotypic variation in most of the experiments for Pc and Peff. Heritability of Pc reached 0.7 and 0.9 for SPAD. Genotypic variation and heritability of traits show that there is scope for these traits to be used in pre-breeding programmes to improve photosynthesis with the ultimate objective of raising yield potential.


Asunto(s)
Fitomejoramiento , Triticum , Australia , Dióxido de Carbono , Variación Genética , Fotosíntesis/genética , Hojas de la Planta , Triticum/genética
15.
Plant Cell Environ ; 42(7): 2133-2150, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30835839

RESUMEN

Greater availability of leaf dark respiration (Rdark ) data could facilitate breeding efforts to raise crop yield and improve global carbon cycle modelling. However, the availability of Rdark data is limited because it is cumbersome, time consuming, or destructive to measure. We report a non-destructive and high-throughput method of estimating Rdark from leaf hyperspectral reflectance data that was derived from leaf Rdark measured by a destructive high-throughput oxygen consumption technique. We generated a large dataset of leaf Rdark for wheat (1380 samples) from 90 genotypes, multiple growth stages, and growth conditions to generate models for Rdark . Leaf Rdark (per unit leaf area, fresh mass, dry mass or nitrogen, N) varied 7- to 15-fold among individual plants, whereas traits known to scale with Rdark , leaf N, and leaf mass per area (LMA) only varied twofold to fivefold. Our models predicted leaf Rdark , N, and LMA with r2 values of 0.50-0.63, 0.91, and 0.75, respectively, and relative bias of 17-18% for Rdark and 7-12% for N and LMA. Our results suggest that hyperspectral model prediction of wheat leaf Rdark is largely independent of leaf N and LMA. Potential drivers of hyperspectral signatures of Rdark are discussed.


Asunto(s)
Respiración de la Célula/fisiología , Hojas de la Planta/metabolismo , Triticum/metabolismo , Australia , Dióxido de Carbono/metabolismo , Respiración de la Célula/efectos de la radiación , Ensayos Analíticos de Alto Rendimiento , Luz , Nitrógeno , Fenotipo , Fotosíntesis , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación , Triticum/crecimiento & desarrollo
16.
J Exp Bot ; 70(1): 7-15, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30357381

RESUMEN

Global food security depends on three main cereal crops (wheat, rice and maize) achieving and maintaining high yields, as well as increasing their future yields. Fundamental to the production of this biomass is photosynthesis. The process of photosynthesis involves a large number of proteins that together account for the majority of the nitrogen in leaves. As large amounts of nitrogen are removed in the harvested grain, this needs to be replaced either from synthetic fertilizer or biological nitrogen fixation. Knowledge about photosynthetic properties of leaves in natural ecosystems is also important, particularly when we consider the potential impacts of climate change. While the relationship between nitrogen and photosynthetic capacity of a leaf differs between species, leaf nitrogen content provides a useful way to incorporate photosynthesis into models of ecosystems and the terrestrial biosphere. This review provides a generalized nitrogen budget for a C3 leaf cell and discusses the potential for improving photosynthesis from a nitrogen perspective.


Asunto(s)
Nitrógeno/metabolismo , Oryza/fisiología , Fotosíntesis/fisiología , Triticum/fisiología , Zea mays/fisiología , Hojas de la Planta/metabolismo
17.
Glob Chang Biol ; 25(5): 1820-1838, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30809890

RESUMEN

Mesophyll conductance (gm ) is known to affect plant photosynthesis. However, gm is rarely explicitly considered in land surface models (LSMs), with the consequence that its role in ecosystem and large-scale carbon and water fluxes is poorly understood. In particular, the different magnitudes of gm across plant functional types (PFTs) are expected to cause spatially divergent vegetation responses to elevated CO2 concentrations. Here, an extensive literature compilation of gm across major vegetation types is used to parameterize an empirical model of gm in the LSM JSBACH and to adjust photosynthetic parameters based on simulated An  - Ci curves. We demonstrate that an explicit representation of gm changes the response of photosynthesis to environmental factors, which cannot be entirely compensated by adjusting photosynthetic parameters. These altered responses lead to changes in the photosynthetic sensitivity to atmospheric CO2 concentrations which depend both on the magnitude of gm and the climatic conditions, particularly temperature. We then conducted simulations under ambient and elevated (ambient + 200 µmol/mol) CO2 concentrations for contrasting ecosystems and for historical and anticipated future climate conditions (representative concentration pathways; RCPs) globally. The gm -explicit simulations using the RCP8.5 scenario resulted in significantly higher increases in gross primary productivity (GPP) in high latitudes (+10% to + 25%), intermediate increases in temperate regions (+5% to + 15%), and slightly lower to moderately higher responses in tropical regions (-2% to +5%), which summed up to moderate GPP increases globally. Similar patterns were found for transpiration, but with a lower magnitude. Our results suggest that the effect of an explicit representation of gm is most important for simulated carbon and water fluxes in the boreal zone, where a cold climate coincides with evergreen vegetation.


Asunto(s)
Dióxido de Carbono/metabolismo , Modelos Teóricos , Fotosíntesis/fisiología , Plantas/metabolismo , Ciclo del Carbono , Dióxido de Carbono/química , Clima , Ecosistema , Plantas/clasificación , Temperatura
18.
Physiol Plant ; 165(3): 451-463, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29885010

RESUMEN

We investigated the fate of carbon dioxide (CO2 ) absorbed by roots or internally produced by respiration using gas exchange and stable isotopic labeling. CO2 efflux from detached leaves supplied with bicarbonate/CO2 solutions was followed over six cycles. CO2 effluxes were detected when bicarbonate solution at high pH was used, corresponding to 71-85% of the expected efflux. No CO2 efflux was detected when CO2 solutions at low pH were used but CO2 efflux was subsequently detected as soon as bicarbonate solutions at high pH were supplied. By sealing the leaf and petiole in a plastic bag to reduce diffusion to the atmosphere, a small CO2 efflux signal (14-30% of the expected efflux) was detected suggesting that CO2 in the xylem stream can readily escape to the atmosphere before reaching the leaf. When the root-zones of intact plants were exposed to CO2 solutions, a significant efflux from leaf surface was observed (13% of the expected efflux). However, no signal was detected when roots were exposed to a high pH bicarbonate solution. Isotopic tracer experiments confirmed that CO2 supplied to the root-zone was transported through the plant and was readily lost to the atmosphere. However, little 13 C moved to the shoot when roots were exposed to bicarbonate solutions at pH 8, suggesting that bicarbonate does not pass into the xylem.


Asunto(s)
Dióxido de Carbono/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Bicarbonatos/metabolismo , Transporte Biológico/fisiología , Concentración de Iones de Hidrógeno , Hojas de la Planta/metabolismo
19.
New Phytol ; 218(2): 492-505, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29436710

RESUMEN

Globally, trees originating from high-rainfall tropical regions typically exhibit lower rates of light-saturated net CO2 assimilation (A) compared with those from high-rainfall temperate environments, when measured at a common temperature. One factor that has been suggested to contribute towards lower rates of A is lower mesophyll conductance. Using a combination of leaf gas exchange and carbon isotope discrimination measurements, we estimated mesophyll conductance (gm ) of several Australian tropical and temperate wet-forest trees, grown in a common environment. Maximum Rubisco carboxylation capacity, Vcmax , was obtained from CO2 response curves. gm and the drawdown of CO2 across the mesophyll were both relatively constant. Vcmax estimated on the basis of intercellular CO2 partial pressure, Ci , was equivalent to that estimated using chloroplastic CO2 partial pressure, Cc , using 'apparent' and 'true' Rubisco Michaelis-Menten constants, respectively Having ruled out gm as a possible factor in distorting variations in A between these tropical and temperate trees, attention now needs to be focused on obtaining more detailed information about Rubisco in these species.


Asunto(s)
Bosques , Células del Mesófilo/fisiología , Nitrógeno/metabolismo , Fotosíntesis , Árboles/fisiología , Clima Tropical , Dióxido de Carbono/metabolismo , Transporte de Electrón , Carácter Cuantitativo Heredable , Ribulosa-Bifosfato Carboxilasa/metabolismo , Especificidad de la Especie
20.
J Exp Bot ; 69(3): 483-496, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29309611

RESUMEN

Improving photosynthesis to raise wheat yield potential has emerged as a major target for wheat physiologists. Photosynthesis-related traits, such as nitrogen per unit leaf area (Narea) and leaf dry mass per area (LMA), require laborious, destructive, laboratory-based methods, while physiological traits underpinning photosynthetic capacity, such as maximum Rubisco activity normalized to 25 °C (Vcmax25) and electron transport rate (J), require time-consuming gas exchange measurements. The aim of this study was to assess whether hyperspectral reflectance (350-2500 nm) can be used to rapidly estimate these traits on intact wheat leaves. Predictive models were constructed using gas exchange and hyperspectral reflectance data from 76 genotypes grown in glasshouses with different nitrogen levels and/or in the field under yield potential conditions. Models were developed using half of the observed data with the remainder used for validation, yielding correlation coefficients (R2 values) of 0.62 for Vcmax25, 0.7 for J, 0.81 for SPAD, 0.89 for LMA, and 0.93 for Narea, with bias <0.7%. The models were tested on elite lines and landraces that had not been used to create the models. The bias varied between -2.3% and -5.5% while relative error of prediction was similar for SPAD but slightly greater for LMA and Narea.


Asunto(s)
Dióxido de Carbono/fisiología , Fotosíntesis/fisiología , Espectrofotometría Infrarroja/métodos , Triticum/fisiología , Hojas de la Planta/fisiología , Espectrofotometría Infrarroja/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA