Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 21(11): e3002367, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37967106

RESUMEN

In mammals, O2 and CO2 levels are tightly regulated and are altered under various pathological conditions. While the molecular mechanisms that participate in O2 sensing are well characterized, little is known regarding the signaling pathways that participate in CO2 signaling and adaptation. Here, we show that CO2 levels control a distinct cellular transcriptional response that differs from mere pH changes. Unexpectedly, we discovered that CO2 regulates the expression of cholesterogenic genes in a SREBP2-dependent manner and modulates cellular cholesterol accumulation. Molecular dissection of the underlying mechanism suggests that CO2 triggers SREBP2 activation through changes in endoplasmic reticulum (ER) membrane cholesterol levels. Collectively, we propose that SREBP2 participates in CO2 signaling and that cellular cholesterol levels can be modulated by CO2 through SREBP2.


Asunto(s)
Dióxido de Carbono , Colesterol , Animales , Colesterol/metabolismo , Transducción de Señal , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Mamíferos/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34426495

RESUMEN

Exercise and circadian biology are closely intertwined with physiology and metabolism, yet the functional interaction between circadian clocks and exercise capacity is only partially characterized. Here, we tested different clock mutant mouse models to examine the effect of the circadian clock and clock proteins, namely PERIODs and BMAL1, on exercise capacity. We found that daytime variance in endurance exercise capacity is circadian clock controlled. Unlike wild-type mice, which outperform in the late compared with the early part of their active phase, PERIODs- and BMAL1-null mice do not show daytime variance in exercise capacity. It appears that BMAL1 impairs and PERIODs enhance exercise capacity in a daytime-dependent manner. An analysis of liver and muscle glycogen stores as well as muscle lipid utilization suggested that these daytime effects mostly relate to liver glycogen levels and correspond to the animals' feeding behavior. Furthermore, given that exercise capacity responds to training, we tested the effect of training at different times of the day and found that training in the late compared with the early part of the active phase improves exercise performance. Overall, our findings suggest that clock proteins shape exercise capacity in a daytime-dependent manner through changes in liver glycogen levels, likely due to their effect on animals' feeding behavior.


Asunto(s)
Proteínas CLOCK/fisiología , Tolerancia al Ejercicio/fisiología , Condicionamiento Físico Animal/fisiología , Factores de Transcripción ARNTL/fisiología , Animales , Proteínas CLOCK/genética , Conducta Alimentaria , Femenino , Luz , Glucógeno Hepático/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculos/metabolismo , Mutación , Proteínas Circadianas Period/fisiología , Fotoperiodo , Caracteres Sexuales , Factores de Tiempo
3.
Cell Rep ; 40(7): 111213, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977481

RESUMEN

High altitude exposes humans to hypobaric hypoxia, which induces various physiological and molecular changes. Recent studies point toward interaction between circadian rhythms and the hypoxic response, yet their human relevance is lacking. Here, we examine the effect of different high altitudes in conjunction with time of day on human whole-blood transcriptome upon an expedition to the highest city in the world, La Rinconada, Peru, which is 5,100 m above sea level. We find that high altitude vastly affects the blood transcriptome and, unexpectedly, does not necessarily follow a monotonic response to altitude elevation. Importantly, we observe daily variance in gene expression, especially immune-related genes, which is largely altitude dependent. Moreover, using a digital cytometry approach, we estimate relative changes in abundance of different cell types and find that the response of several immune cell types is time- and altitude dependent. Taken together, our data provide evidence for interaction between the transcriptional response to hypoxia and the time of day in humans.


Asunto(s)
Hipoxia , Transcriptoma , Altitud , Humanos , Hipoxia/genética , Transcriptoma/genética
4.
STAR Protoc ; 2(1): 100331, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33598660

RESUMEN

There is growing interest in medicine and sports in uncovering exercise modifiers that enhance or limit exercise capacity. Here, we detail a protocol for testing the daytime effect on running capacity in mice using a moderate intensity treadmill effort test. Instructions for dissecting soleus, gastrocnemius plantaris, and quadriceps muscles for further analysis are provided as well. This experimental setup is optimized for addressing questions regarding the involvement of daytime and circadian clocks in regulating exercise capacity. For complete details on the use and execution of this protocol, please refer to Ezagouri et al. (2019).


Asunto(s)
Tolerancia al Ejercicio , Microdisección , Músculo Esquelético , Condicionamiento Físico Animal , Animales , Masculino , Ratones
5.
Nat Metab ; 3(6): 829-842, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34059820

RESUMEN

The mammalian circadian system consists of a central clock in the brain that synchronizes clocks in the peripheral tissues. Although the hierarchy between central and peripheral clocks is established, little is known regarding the specificity and functional organization of peripheral clocks. Here, we employ altered feeding paradigms in conjunction with liver-clock mutant mice to map disparities and interactions between peripheral rhythms. We find that peripheral clocks largely differ in their responses to feeding time. Disruption of the liver-clock, despite its prominent role in nutrient processing, does not affect the rhythmicity of clocks in other peripheral tissues. Yet, unexpectedly, liver-clock disruption strongly modulates the transcriptional rhythmicity of peripheral tissues, primarily on daytime feeding. Concomitantly, liver-clock mutant mice exhibit impaired glucose and lipid homeostasis, which are aggravated by daytime feeding. Overall, our findings suggest that, upon nutrient challenge, the liver-clock buffers the effect of feeding-related signals on rhythmicity of peripheral tissues, irrespective of their clocks.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Ingestión de Energía , Hígado/fisiología , Animales , Encéfalo/fisiología , Metabolismo Energético , Conducta Alimentaria , Regulación de la Expresión Génica , Glucosa/metabolismo , Metabolismo de los Lípidos , Ratones , Mutación , Especificidad de Órganos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Transducción de Señal
6.
Cell Metab ; 30(1): 78-91.e4, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31006590

RESUMEN

Physical performance relies on the concerted action of myriad responses, many of which are under circadian clock control. Little is known, however, regarding the time-dependent effect on exercise performance at the molecular level. We found that both mice and humans exhibit daytime variance in exercise capacity between the early and late part of their active phase. The daytime variance in mice was dependent on exercise intensity and relied on the circadian clock proteins PER1/2. High-throughput gene expression and metabolic profiling of skeletal muscle revealed metabolic pathways that are differently activated upon exercise in a daytime-dependent manner. Remarkably, we discovered that ZMP, an endogenous AMPK activator, is induced by exercise in a time-dependent manner to regulate key steps in glycolytic and fatty acid oxidation pathways and potentially enhance exercise capacity. Overall, we propose that time of day is a major modifier of exercise capacity and associated metabolic pathways.


Asunto(s)
Ritmo Circadiano/fisiología , Músculo Esquelético/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Animales , Ritmo Circadiano/genética , Humanos , Immunoblotting , Metabolómica/métodos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Ribonucleótidos/metabolismo , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA