Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791371

RESUMEN

The process of aging is intimately linked to alterations at the tissue and cellular levels. Currently, the role of senescent cells in the tissue microenvironment is still being investigated. Despite common characteristics, different cell populations undergo distinctive morphofunctional changes during senescence. Mesenchymal stem cells (MSCs) play a pivotal role in maintaining tissue homeostasis. A multitude of studies have examined alterations in the cytokine profile that determine their regulatory function. The extracellular matrix (ECM) of MSCs is a less studied aspect of their biology. It has been shown to modulate the activity of neighboring cells. Therefore, investigating age-related changes in the MSC matrisome is crucial for understanding the mechanisms of tissue niche ageing. This study conducted a broad proteomic analysis of the matrisome of separated fractions of senescent MSCs, including the ECM, conditioned medium (CM), and cell lysate. This is the first time such an analysis has been conducted. It has been established that there is a shift in production towards regulatory molecules and a significant downregulation of the main structural and adhesion proteins of the ECM, particularly collagens, fibulins, and fibrilins. Additionally, a decrease in the levels of cathepsins, galectins, S100 proteins, and other proteins with cytoprotective, anti-inflammatory, and antifibrotic properties has been observed. However, the level of inflammatory proteins and regulators of profibrotic pathways increases. Additionally, there is an upregulation of proteins that can directly cause prosenescent effects on microenvironmental cells (SERPINE1, THBS1, and GDF15). These changes confirm that senescent MSCs can have a negative impact on other cells in the tissue niche, not only through cytokine signals but also through the remodeled ECM.


Asunto(s)
Senescencia Celular , Matriz Extracelular , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Matriz Extracelular/metabolismo , Proteómica/métodos , Proteoma/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Células Cultivadas , Medios de Cultivo Condicionados/farmacología
2.
Int J Mol Sci ; 21(5)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32151085

RESUMEN

Nowadays, paracrine regulation is considered as a major tool of mesenchymal stem cell (MSC) involvement in tissue repair and renewal in adults. Aging results in alteration of tissue homeostasis including neovascularization. In this study, we examined the influence of replicative senescence on the angiogenic potential of adipose-derived MSCs (ASCs). Angiogenic activity of conditioned medium (CM) from senescent and "young" ASCs was evaluated in chorioallantoic membrane (CAM) assay in ovo using Japanese quail embryos. Also, the formation of capillary-like tubes by human umbilical vein endothelial cells (HUVECs) in 3D basement membrane matrix ''Matrigel'' and HUVEC migration capacity were analyzed. Multiplex, dot-blot and gene expression analysis were performed to characterize transcription and production of about 100 angiogenesis-associated proteins. The results point to decreased angiogenic potential of senescent ASC secretome in ovo. A number of angiogenesis-associated proteins demonstrated elevation in CM after long-term cultivation. Meanwhile, VEGF (key positive regulator of angiogenesis) did not change transcription level and concentration in CM. Increasing both pro- (FGF-2, uPA, IL-6, IL-8 etc.) and antiangiogenic (IL-4, IP-10, PF4, Activin A, DPPIV etc.) factors was observed. Some proangiogenic genes were downregulated (IGF1, MMP1, TGFB3, PDGFRB, PGF). Senescence-associated secretory phenotype (SASP) modifications after long-term cultivation lead to attenuation of angiogenic potential of ASC.


Asunto(s)
Proteínas Angiogénicas/metabolismo , Senescencia Celular , Células Madre Mesenquimatosas/metabolismo , Neovascularización Fisiológica , Comunicación Paracrina , Adulto , Movimiento Celular , Proliferación Celular , Células Cultivadas , Membrana Corioalantoides/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Mesenquimatosas/citología , Persona de Mediana Edad
3.
Cell Biochem Funct ; 37(4): 228-238, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30932215

RESUMEN

The interaction of adipose mesenchymal stromal cells (ASCs) and allogeneic peripheral blood mononuclear cells (PBMCs) is regulated either through direct or paracrine mechanisms. Here, we examined the impact of direct contact in reciprocal regulation of ASC-PBMC functions. Activated PBMCs in vitro induced ASC immunomodulatory activity, while direct and paracrine intercellular interactions regulated PBMCs themselves: the functional state of the organelles was altered, and activation decreased. Direct contact with immune cells affected the activity of ASC intracellular compartments, in particular, reactive oxygen species (ROS) production, and decreased the growth rate. Some ASC properties, including motility, intercellular adhesion molecule-1 (ICAM-1), and major histocompatibility complex class I and II antigens (HLA-ABC and HLA-DR, respectively) expression, did not depend on contact with PBMCs and were only regulated by paracrine means. Direct ASC and PBMC contact favoured an angiogenesis-supportive microenvironment, possibly due to the greater production of VEGF by ASCs; this microenvironment also contained a higher leukemia inhibitory factor (LIF) level. Thus, a change in the functional activity of ASCs and PBMCs upon interaction promoted the formation of an immunosuppressive, anti-inflammatory, and proangiogenic microenvironment. This environment could help resolve inflammation and further restore damaged tissue. SIGNIFICANCE OF THE STUDY: Numerous studies have demonstrated the beneficial effects of transplanted mesenchymal stromal cells, particularly ASCs, for the treatment of a number of autoimmune diseases as well as various tissue injuries. To improve the efficiency of these methods, it is necessary to understand the principal events that occur when ASCs are introduced, primarily the molecular mechanisms of interaction between ASCs and the recipient immune system. We demonstrated that an anti-inflammatory, immunosuppressive, and angiostimulatory shift in the paracrine profile upon the interaction of activated PBMCs and ASCs changes the functional activity of both cell types, a phenomenon that is potentiated by direct cell-cell contact.


Asunto(s)
Tejido Adiposo/citología , Técnicas de Cocultivo , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/inmunología , Células Madre Mesenquimatosas/citología , Comunicación Celular , Supervivencia Celular , Células Cultivadas , Humanos
4.
Cells ; 13(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39195236

RESUMEN

Currently, there is a growing focus on aging and age-related diseases. The processes of aging are based on cell senescence, which results in changes in intercellular communications and pathological alterations in tissues. In the present study, we investigate the influence of senescent mesenchymal stem cells (MSCs) on endothelial cells (ECs). In order to induce senescence in MSCs, we employed a method of stress-induced senescence utilizing mitomycin C (MmC). Subsequent experiments involved the interaction of ECs with MSCs in a coculture or the treatment of ECs with the secretome of senescent MSCs. After 48 h, we assessed the EC state. Our findings revealed that direct interaction led to a decrease in EC proliferation and migratory activity of the coculture. Furthermore, there was an increase in the activity of the lysosomal compartment, as well as an upregulation of the genes P21, IL6, IL8, ITGA1, and ITGB1. Treatment of ECs with the "senescent" secretome resulted in less pronounced effects, although a decrease in proliferation and an increase in ICAM-1 expression were observed. The maintenance of high levels of typical "senescent" cytokines and growth factors after 48 h suggests that the addition of the "senescent" secretome may have a prolonged effect on the cells. It is noteworthy that in samples treated with the "senescent" secretome, the level of PDGF-AA was higher, which may explain some of the pro-regenerative effects of senescent cells. Therefore, the detected changes may underlie both the negative and positive effects of senescence. The findings provide insight into the effects of cell senescence in vitro, where many of the organism's regulatory mechanisms are absent.


Asunto(s)
Proliferación Celular , Senescencia Celular , Células Endoteliales , Células Madre Mesenquimatosas , Senescencia Celular/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Proliferación Celular/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/citología , Técnicas de Cocultivo , Movimiento Celular/efectos de los fármacos , Citocinas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Secretoma/metabolismo , Lisosomas/metabolismo , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA