Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 21: 1448-1460, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36851917

RESUMEN

In an ever-growing need for data storage capacity, the Deoxyribonucleic Acid (DNA) molecule gains traction as a new storage medium with a larger capacity, higher density, and a longer lifespan over conventional storage media. To effectively use DNA for data storage, it is important to understand the different methods of encoding information in DNA and compare their effectiveness. This requires evaluating which decoded DNA sequences carry the most encoded information based on various attributes. However, navigating the field of coding theory requires years of experience and domain expertise. For instance, domain experts rely on various mathematical functions and attributes to score and evaluate their encodings. To enable such analytical tasks, we provide an interactive and visual analytical framework for multi-attribute ranking in DNA storage systems. Our framework follows a three-step view with user-settable parameters. It enables users to find the optimal en-/de-coding approaches by setting different weights and combining multiple attributes. We assess the validity of our work through a task-specific user study on domain experts by relying on three tasks. Results indicate that all participants completed their tasks successfully under two minutes, then rated the framework for design choices, perceived usefulness, and intuitiveness. In addition, two real-world use cases are shared and analyzed as direct applications of the proposed tool. DNAsmart enables the ranking of decoded sequences based on multiple attributes. In sum, this work unveils the evaluation of en-/de-coding approaches accessible and tractable through visualization and interactivity to solve comparison and ranking tasks.

2.
Mater Today Bio ; 15: 100306, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35677811

RESUMEN

Deoxyribonucleic acid (DNA) is increasingly emerging as a serious medium for long-term archival data storage because of its remarkable high-capacity, high-storage-density characteristics and its lasting ability to store data for thousands of years. Various encoding algorithms are generally required to store digital information in DNA and to maintain data integrity. Indeed, since DNA is the information carrier, its performance under different processing and storage conditions significantly impacts the capabilities of the data storage system. Therefore, the design of a DNA storage system must meet specific design considerations to be less error-prone, robust and reliable. In this work, we summarize the general processes and technologies employed when using synthetic DNA as a storage medium. We also share the design considerations for sustainable engineering to include viability. We expect this work to provide insight into how sustainable design can be used to develop an efficient and robust synthetic DNA-based storage system for long-term archiving.

3.
Front Genet ; 13: 891240, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664339

RESUMEN

Sustained efforts in next-generation sequencing technologies are changing the field of taxonomy. The increase in the number of resolved genomes has made the traditional taxonomy of species antiquated. With phylogeny-based methods, taxonomies are being updated and refined. Although such methods bridge the gap between phylogeny and taxonomy, phylogeny-based taxonomy currently lacks interactive visualization approaches. Motivated by enriching and increasing the consistency of evolutionary and taxonomic studies alike, we propose Context-Aware Phylogenetic Trees (CAPT) as an interactive web tool to support users in exploration- and validation-based tasks. To complement phylogenetic information with phylogeny-based taxonomy, we offer linking two interactive visualizations which compose two simultaneous views: the phylogenetic tree view and the taxonomic icicle view. Thanks to its space-filling properties, the icicle visualization follows the intuition behind taxonomies where different hierarchical rankings with equal number of child elements can be represented with same-sized rectangular areas. In other words, it provides partitions of different sizes depending on the number of elements they contain. The icicle view integrates seven taxonomic rankings: domain, phylum, class, order, family, genus, and species. CAPT enriches the clades in the phylogenetic tree view with context from the genomic data and supports interactive techniques such as linking and brushing to highlight correspondence between the two views. Four different use cases, extracted from the Genome Taxonomy DataBase, were employed to create four scenarios using our approach. CAPT was successfully used to explore the phylogenetic trees as well as the taxonomic data by providing context and using the interaction techniques. This tool is essential to increase the accuracy of categorization of newly identified species and validate updated taxonomies. The source code and data are freely available at https://github.com/ghattab/CAPT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA