RESUMEN
INTRODUCTION: The objectives were to describe the peri-operative management of people with inherited bleeding disorders in oral surgery and to investigate the association between type of surgery and risk of developing bleeding complications. MATERIALS AND METHODS: This retrospective observational study included patients with haemophilia A or B, von Willebrand disease, Glanzmann thrombasthenia or isolated coagulation factor deficiency such as afibrinogenemia who underwent osseous (third molar extraction, ortho-surgical traction, dental implant placement) or nonosseous oral surgery between 2014 and 2021 at Bordeaux University Hospital (France). Patients and oral surgery characteristics were retrieved from medical records. Odds ratio (OR) and 95% confidence interval (CI) were estimated using logistic regression. RESULTS: Of the 83 patients included, general anaesthesia was performed in 16%. Twelve had a bleeding complication (14.5%) including six after osseous surgery. The most serious complication was the appearance of anti-FVIII inhibitor in a patient with moderate haemophilia A. All bleeding complications were managed by a local treatment and factor injections where indicated. No association was observed between type of surgery (osseous vs. nonosseous) and risk of bleeding complications after controlling for sex, age, disease type and severity, multiple extractions, type of anaesthesia and use of fibrin glue (OR: 3.21, 95% CI: .69-14.88). CONCLUSION: In this study, we have observed that bleeding complications after oral surgery in people with inherited bleeding disorders were moderately frequent and easily managed. However, in this study, we observed a serious complication highlighting the necessity of a thorough benefit-risk balance evaluation during the preoperative planning of the surgical and medical protocol.
Asunto(s)
Procedimientos Quirúrgicos Orales , Humanos , Estudios Retrospectivos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Adulto Joven , Procedimientos Quirúrgicos Orales/métodos , Adolescente , Anciano , Trastornos de la Coagulación Sanguínea Heredados/complicaciones , Niño , Hemofilia A/complicacionesRESUMEN
The amniotic membrane (AM) is the innermost part of the fetal placenta, which surrounds and protects the fetus. Due to its structural components (stem cells, growth factors, and proteins), AMs display unique biological properties and are a widely available and cost-effective tissue. As a result, AMs have been used for a century as a natural biocompatible dressing for healing corneal and skin wounds. To further increase its properties and expand its applications, advanced hybrid materials based on AMs have recently been developed. One existing approach is to combine the AM with a secondary material to create composite membranes. This review highlights the increasing development of new multilayer composite-based AMs in recent years and focuses on the benefits of additive manufacturing technologies and electrospinning, the most commonly used strategy, in expanding their use for tissue engineering and clinical applications. The use of AMs and multilayer composite-based AMs in the context of nerve regeneration is particularly emphasized and other tissue engineering applications are also discussed. This review highlights that these electrospun multilayered composite membranes were mainly created using decellularized or de-epithelialized AMs, with both synthetic and natural polymers used as secondary materials. Finally, some suggestions are provided to further enhance the biological and mechanical properties of these composite membranes.
Asunto(s)
Amnios , Córnea , Embarazo , Femenino , Humanos , Ingeniería de Tejidos , Células Madre , Polímeros , Andamios del TejidoRESUMEN
INTRODUCTION: The aim of this study was to assess the knowledge and clinical experience of oral potentially malignant disorders (OPMDs) in undergraduate dental students in six European countries (Croatia, France, Italy, Portugal, Spain and United Kingdom) and assess student's attitude and preference to future education on the topic. A secondary aim was to identify gaps in student's knowledge and clinical practice. The study was a part of the Erasmus+ project "Oral Potentially Malignant Disorders: Healthcare Professionals Training" (Grant No: 2020-1-UK01-KA202-078917). MATERIALS AND METHODS: An online questionnaire was distributed to all final-year students in six partner universities. This consisted of four parts assessing: (1) knowledge on OPMDs, (2) clinical experience with this group of patients, (3) self-rated competence in the management of OPMDs and (4) preferences with regard to future education. RESULTS: Two hundred and sixty final-year dental students from six partner universities responded to the questionnaire. Response rates varied from 12% to 92% between partner universities. Significant differences in clinical experience and knowledge were found between students. Students with more clinical exposure to OPMDs rated their knowledge and competence in the management of OPMDs higher than students with less clinical experience. The majority of students were interested in future education on OPMDs, preferably via short educational videos. CONCLUSION: The majority of students have received theoretical knowledge of OPMDs during their undergraduate studies, however, not all had clinical exposure to this group of patients. Students were open to further education on OPMDs. Important deficiencies in knowledge were identified that need to be addressed and it is anticipated that the e-learning platform and e-book that are in development by partner institutions will help to improve overall knowledge of OPMDs.
Asunto(s)
Educación en Odontología , Estudiantes de Odontología , Humanos , Aprendizaje , Evaluación Educacional , Europa (Continente) , Encuestas y CuestionariosRESUMEN
The human amniotic membrane (hAM) is an attractive biomaterial for regenerative medicine, as it contains amniotic mesenchymal stromal cells (hAMSC), epithelial cells (hAEC) and growth factors. We examined the potential use of hAM in orthopaedic and maxillofacial bone surgery, integrating the requirements of current regulations regarding advanced therapy medicinal products (ATMP) in the European Union. Previous studies have described the potential osteodifferentiation of intact hAM during whole-tissue culture in osteogenic conditions. The present study aims to determine whether in vitro osteodifferentiation of hAM is needed in the context bone repair, and the influence of this process on tissue structure, cell phenotype and cell function. Different conditions (fresh or cultured hAM; intact or hAM-derived cells) were tested. Phenotypic and functional analyses were performed with standard approaches (cell culture and staining, histological and immunolabelling) as well as original approaches (tissue staining, energy dispersive X-ray and X-ray diffraction). In our study, non-osteodifferentiated hAM (i.e., fresh or native hAM) exhibited innate pre-osteoblastic potential. Osteodifferentiation of fresh hAM induced a change in tissue structure, cell phenotype and function. Therefore, we hypothesize that pre-osteodifferentiation may not be necessary, especially if it induces unwanted changes. To our surprise, in these osteogenic conditions, hAEC had a mesenchymal phenotype with osteocyte function, and even native synthesis of hydroxyapatite, focusing osteogenic potential mainly in this epithelial layer. In conclusion, in vitro osteodifferentiation by tissue culture does not appear to be necessary for hAM to be used as an innovative ATMP for bone repair.
Asunto(s)
Amnios/metabolismo , Trasplante Óseo/métodos , Huesos/patología , Diferenciación Celular , Osteoblastos/citología , Osteocitos/citología , Regeneración Ósea , Técnicas de Cultivo de Célula , Células Epiteliales/citología , Humanos , Células Madre Mesenquimatosas/citología , Ortopedia , Osteogénesis , Fenotipo , Medicina Regenerativa , Bancos de Tejidos , Ingeniería de Tejidos , Andamios del Tejido/químicaRESUMEN
Due to its biological properties, human amniotic membrane (hAM) is widely studied in the field of tissue engineering and regenerative medicine. hAM is already very attractive for wound healing and it may be helpful as a support for bone regeneration. However, few studies assessed its potential for guided bone regeneration (GBR). The purpose of the present study was to assess the potential of the hAM as a membrane for GBR. In vitro, cell viability in fresh and cryopreserved hAM was assessed. In vivo, we evaluated the impact of fresh versus cryopreserved hAM, using both the epithelial or the mesenchymal layer facing the defect, on bone regeneration in a critical calvarial bone defect in mice. Then, the efficacy of cryopreserved hAM associated with a bone substitute was compared to a collagen membrane currently used for GBR. In vitro, no statistical difference was observed between the conditions concerning cell viability. Without graft material, cryopreserved hAM induced more bone formation when the mesenchymal layer covered the defect compared to the defect left empty. When associated with a bone substitute, such improved bone repair was not observed. These preliminary results suggest that cryopreserved hAM has a limited potential for GBR.
Asunto(s)
Amnios/química , Regeneración Ósea/efectos de los fármacos , Sustitutos de Huesos/química , Colágeno/química , Regeneración Tisular Dirigida , Animales , Materiales Biocompatibles , Huesos/metabolismo , Supervivencia Celular , Criopreservación , Durapatita/química , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Osteogénesis/efectos de los fármacos , Medicina Regenerativa , Cráneo/efectos de los fármacos , Ingeniería de Tejidos , Cicatrización de Heridas/efectos de los fármacos , Rayos XRESUMEN
Pre-implant bone surgery in oral surgery allows to reconstruct maxillary atrophies related to traumatic, infectious or tumoral processes. In this context, the ideal biomaterial remains autogenous bone, but biomaterials (of natural or synthetic origin) allow to limit the morbidity linked to bone harvesting, and to simplify these surgical procedures. In this article, we illustrate how 3D printing technologies can be used as an adjuvant to treat bone defects of complex shape or to create anatomical models used to plan interventions. Finally, some perspectives brought by tissue engineering and bioprinting (creation of complex in vitro models) are presented.
Title: Impression 3D et bioimpression pour la régénération osseuse en chirurgie orale. Abstract: La chirurgie osseuse pré-implantaire en chirurgie orale permet de reconstruire les atrophies des maxillaires en rapport avec des processus traumatiques, infectieux ou tumoraux. Dans ce contexte, le biomatériau idéal reste l'os autogène mais les biomatériaux (d'origine naturelle ou synthétique) permettent de limiter la morbidité liée aux prélèvements osseux et de simplifier ces interventions chirurgicales. Dans cet article, nous illustrons l'apport récent de l'impression 3D dans ce contexte pour traiter des défauts osseux de forme complexe ou pour créer des modèles anatomiques servant à planifier les interventions. Enfin, les perspectives apportées par l'ingénierie tissulaire et la bioimpression (création de modèles in vitro complexes) sont détaillées.
Asunto(s)
Bioimpresión , Procedimientos Quirúrgicos Orales , Humanos , Bioimpresión/métodos , Materiales Biocompatibles , Ingeniería de Tejidos/métodos , Impresión Tridimensional , Andamios del TejidoRESUMEN
BACKGROUND: Three-dimensional (3D) printing is now a widely recognized surgical tool in oral and maxillofacial surgery. However, little is known about its benefits for the surgical management of benign maxillary and mandibular tumors and cysts. PURPOSE: The objective of this systematic review was to assess the contribution of 3D printing in the management of benign jaw lesions. METHODS: A systematic review, registered in PROSPERO, was conducted using PubMed and Scopus databases, up to December 2022, by following PRISMA guidelines. Studies reporting 3D printing applications for the surgical management of benign jaw lesions were considered. RESULTS: This review included thirteen studies involving 74 patients. The principal use of 3D printing was to produce anatomical models, intraoperative surgical guides, or both, allowing for the successful removal of maxillary and mandibular lesions. The greatest reported benefits of printed models were the visualization of the lesion and its anatomical relationships to anticipate intraoperative risks. Surgical guides were designed as drilling locating guides or osteotomy cutting guides and contributed to decreasing operating time and improving the accuracy of the surgery. CONCLUSION: Using 3D printing technologies to manage benign jaw lesions results in less invasive procedures by facilitating precise osteotomies, reducing operating times, and complications. More studies with higher levels of evidence are needed to confirm our results.
Asunto(s)
Quistes , Neoplasias Mandibulares , Humanos , Impresión Tridimensional , Mandíbula , Neoplasias Mandibulares/cirugía , Osteotomía/métodosRESUMEN
Despite improved knowledge regarding the diagnosis and treatment of osteomyelitis of the jaw (OMJ), it remains a clinical challenge for oral and maxillofacial surgeons. This study aimed to identify risk factors associated with severe forms of OMJ, i.e., related to the occurrence of major complications or the refractory course of the disease. A retrospective study was performed based on the medical records of all patients diagnosed with OMJ from the past 20 years. Collected data included demographic information, medical and dental history, clinical, radiological, and bacterial findings as well as treatment modalities. The main outcome variables were the onset of major complications and treatment results. Fifty-four patients were included. Our results showed that alcohol and smoking habits, as well as malnutrition, were significantly associated with the occurrence of major complications. We also established that dental implant-induced OMJ should be considered an aggressive subtype of OMJ. Finally, clinical bone exposure was significantly associated with unfavorable outcomes, whereas dental causes or radiological evidence of periosteal reaction were predictive of successful outcomes. Identifying such factors could be useful in preventing serious complications and informing patients about the refractory course of the disease based on the presence of these factors.
RESUMEN
INTRODUCTION: Guided bone regeneration (GBR) procedures require selecting suitable membranes for oral surgery. Pullulan and/or dextran-based polysaccharide materials have shown encouraging results in bone regeneration as bone substitutes but have not been used to produce barrier membranes. The present study aimed to develop and characterize pullulan/dextran-derived membranes for GBR. MATERIALS AND METHODS: Two pullulan/dextran-based membranes, containing or not hydroxyapatite (HA) particles, were developed. In vitro, cytotoxicity evaluation was performed using human bone marrow mesenchymal stem cells (hBMSCs). Biocompatibility was assessed on rats in a subcutaneous model for up to 16 weeks. In vivo, rat femoral defects were created on 36 rats to compare the two pullulan/dextran-based membranes with a commercial collagen membrane (Bio-Gide®). Bone repair was assessed radiologically and histologically. RESULTS: Both polysaccharide membranes demonstrated cytocompatibility and biocompatibility. Micro-computed tomography (micro-CT) analyses at two weeks revealed that the HA-containing membrane promoted a significant increase in bone formation compared to Bio-Gide®. At one month, similar effects were observed among the three membranes in terms of bone regeneration. CONCLUSION: The developed pullulan/dextran-based membranes evidenced biocompatibility without interfering with bone regeneration and maturation. The HA-containing membrane, which facilitated early bone regeneration and offered adequate mechanical support, showed promising potential for GBR procedures.
RESUMEN
The last 18 years have brought an increasing interest in the therapeutic use of perinatal derivatives (PnD). Preclinical studies used to assess the potential of PnD therapy include a broad range of study designs. The COST SPRINT Action (CA17116) aims to provide systematic and comprehensive reviews of preclinical studies for the understanding of the therapeutic potential and mechanisms of PnD in diseases and injuries that benefit from PnD therapy. Here we describe the publication search and data mining, extraction, and synthesis strategies employed to collect and prepare the published data selected for meta-analyses and reviews of the efficacy of PnD therapies for different diseases and injuries. A coordinated effort was made to prepare the data suitable to make statements for the treatment efficacy of the different types of PnD, routes, time points, and frequencies of administration, and the dosage based on clinically relevant effects resulting in clear increase, recovery or amelioration of the specific tissue or organ function. According to recently proposed guidelines, the harmonization of the nomenclature of PnD types will allow for the assessment of the most efficient treatments in various disease models. Experts within the COST SPRINT Action (CA17116), together with external collaborators, are doing the meta-analyses and reviews using the data prepared with the strategies presented here in the relevant disease or research fields. Our final aim is to provide standards to assess the safety and clinical benefit of PnD and to minimize redundancy in the use of animal models following the 3R principles for animal experimentation.
RESUMEN
Bone tissue engineering (BTE) strategies are increasingly investigated to overcome the limitations of currently used bone substitutes and to improve the bone regeneration process. Among the natural polymers used for tissue engineering, dextran and pullulan appear as natural hydrophilic polysaccharides that became promising biomaterials for BTE. This systematic review aimed to present the different published applications of pullulan and dextran-based biomaterials for BTE. An electronic search in Pubmed, Scopus, and Web of Science databases was conducted. Selection of articles was performed following PRISMA guidelines. This systematic review led to the inclusion of 28 articles on the use of pullulan and/or dextran-based biomaterials to promote bone regeneration in preclinical models. Sixteen studies focused on dextran-based materials for bone regeneration, six on pullulan substitutes and six on the combination of pullulan and dextran. Several strategies have been developed to provide bone regeneration capacity, mainly through their fabrication processes (functionalization methods, cross-linking process), or the addition of bioactive elements. We have summarized here the strategies employed to use the polysaccharide scaffolds (fabrication process, composition, application usages, route of administration), and we highlighted their relevance and limitations for BTE applications.
RESUMEN
Because synthetic vascular prostheses perform poorly in small-diameter revascularization, biological vascular substitutes are being developed as an alternative. Although theirin vivoresults are promising, their production involves long, complex, and expensive tissue engineering methods. To overcome these limitations, we propose an innovative approach that combines the human amniotic membrane (HAM), which is a widely available and cost-effective biological raw material, with a rapid and robust textile-inspired assembly strategy. Fetal membranes were collected after cesarean deliveries at term. Once isolated by dissection, HAM sheets were cut into ribbons that could be further processed by twisting into threads. Characterization of the HAM yarns (both ribbons and threads) showed that their physical and mechanical properties could be easily tuned. Since our clinical strategy will be to provide an off-the-shelf allogeneic implant, we studied the effects of decellularization and/or gamma sterilization on the histological, mechanical, and biological properties of HAM ribbons. Gamma irradiation of hydrated HAMs, with or without decellularization, did not interfere with the ability of the matrix to support endothelium formationin vitro. Finally, our HAM-based, woven tissue-engineered vascular grafts (TEVGs) exhibited clinically relevant mechanical properties. Thus, this study demonstrates that human, completely biological, allogeneic, small-diameter TEVGs can be produced from HAM, thereby avoiding costly cell culture and bioreactors.
Asunto(s)
Amnios , Sustitutos Sanguíneos , Prótesis Vascular , Femenino , Humanos , Embarazo , Textiles , Ingeniería de Tejidos/métodos , Andamios del TejidoRESUMEN
Medication-related osteonecrosis of the jaw (MRONJ) is a complication caused by anti-resorptive agents and anti-angiogenesis drugs. Since we wanted to write a protocol for a randomized clinical trial (RCT), we reviewed the literature for the essential information needed to estimate the size of the active patient population and measure the effects of therapeutics. At the same time, we designed a questionnaire intended for clinicians to collect detailed information about their practices. Twelve essential criteria and seven additional items were identified and compiled from 43 selected articles. Some of these criteria were incorporated in the questionnaire coupled with data on clinical practices. Our review found extensive missing data and a lack of consensus. For example, the success rate often combined MRONJ stages, diseases, and drug treatments. The occurrence date and evaluation methods were not harmonized or quantitative enough. The primary and secondary endpoints, failure definition, and date coupled to bone measurements were not well established. This information is critical for writing a RCT protocol. With this review article, we aim to encourage authors to contribute all their findings in the field to bridge the current knowledge gap and provide a stronger database for the coming years.
Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos , Conservadores de la Densidad Ósea , Humanos , Difosfonatos , Osteonecrosis de los Maxilares Asociada a Difosfonatos/tratamiento farmacológico , Conservadores de la Densidad Ósea/efectos adversos , Inhibidores de la Angiogénesis , Conocimiento , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
Perinatal tissues, such as placenta and umbilical cord contain a variety of somatic stem cell types, spanning from the largely used hematopoietic stem and progenitor cells to the most recently described broadly multipotent epithelial and stromal cells. As perinatal derivatives (PnD), several of these cell types and related products provide an interesting regenerative potential for a variety of diseases. Within COST SPRINT Action, we continue our review series, revising and summarizing the modalities of action and proposed medical approaches using PnD products: cells, secretome, extracellular vesicles, and decellularized tissues. Focusing on the brain, bone, skeletal muscle, heart, intestinal, liver, and lung pathologies, we discuss the importance of potency testing in validating PnD therapeutics, and critically evaluate the concept of PnD application in the field of tissue regeneration. Hereby we aim to shed light on the actual therapeutic properties of PnD, with an open eye for future clinical application. This review is part of a quadrinomial series on functional/potency assays for validation of PnD, spanning biological functions, such as immunomodulation, anti-microbial/anti-cancer, anti-inflammation, wound healing, angiogenesis, and regeneration.
RESUMEN
Oral submucous fibrosis (OSF) is a chronic progressive condition affecting the oral cavity, oropharynx and upper third of the oesophagus. It is a potentially malignant disorder. The authors collated and analysed the existing literature to establish the overall malignant transformation rate (MTR). A retrospective analysis of medical and dental scientific literature using online indexed databases was conducted for the period 1956 to 2021. The quality of the enrolled studies was assessed by the Newcastle-Ottawa Scale (NOS). A meta-analysis using a random effects model of a single proportion was performed along with statistical tests for heterogeneity. The overall proportion of malignancy across all studies was 0.06 (95% CI, 0.02-0.10), indicating an overall 6% risk of malignant transformation across all studies and cohorts. Sub-group analyses revealed strong differences in proportion of malignancy according to ethnicity/cohort; Chinese = 0.02 (95% CI 0.01-0.02), Taiwanese = 0.06 (95% CI, 0.03-0.10), Indian = 0.08 (95% CI, 0.03-0.14) and Pakistani = 0.27 (95% CI 0.25-0.29). Overall, the MTR was 6%; however, wide heterogeneity of the included studies was noted. Geographic variations in MTR were noted but were not statistically significant. Further studies are required to analyse the difference between cohort groups.
RESUMEN
Medication-related osteonecrosis of the jaw (MRONJ) is a complication of certain pharmacological treatments such as bisphosphonates, denosumab, and angiogenesis inhibitors. There are currently no guidelines on its management, particularly in advanced stages. The human amniotic membrane (hAM) has low immunogenicity and exerts anti-inflammatory, antifibrotic, antimicrobial, antiviral, and analgesic effects. It is a source of stem cells and growth factors promoting tissue regeneration. hAM acts as an anatomical barrier with suitable mechanical properties (permeability, stability, elasticity, flexibility, and resorbability) to prevent the proliferation of fibrous tissue and promote early neovascularization at the surgical site. In oral surgery, hAM stimulates healing and facilitates the proliferation and differentiation of epithelial cells in the oral mucosa and therefore its regeneration. We proposed using cryopreserved hAM to eight patients suffering from cancer (11 lesions) with stage 2-3 MRONJ on a compassionate use basis. A collagen sponge was added in some cases to facilitate hAM grafting. One or three hAMs were applied and one patient had a reapplication. Three patients had complete closure of the surgical site with proper epithelialization at 2 weeks, and two of them maintained it until the last follow-up. At 1 week after surgery, three patients had partial wound dehiscence with partial healing 3 months later and two patients had complete wound dehiscence. hAM reapplication led to complete healing. All patients remained asymptomatic with excellent immediate significant pain relief, no infections, and a truly positive impact on the patients' quality of life. No adverse events occurred. At 6 months of follow-up, 80% of lesions had complete or partial wound healing (30 and 50%, respectively), while 62.5% of patients were in stage 3. Radiological evaluations found that 85.7% of patients had stable bone lesions (n = 5) or new bone formation (n = 1). One patient had a worsening MRONJ but remained asymptomatic. One patient did not attend his follow-up radiological examination. For the first time, this prospective pilot study extensively illustrates both the handling and surgical application of hAM in MRONJ, its possible association with a collagen sponge scaffold, its outcome at the site, the application of multiple hAM patches at the same time, and its reapplication.
RESUMEN
The aim of this study was to perform a systematic review on the clinical applications where chorion membrane (CM) and amnion/chorion membrane (ACM) were used for oral tissue regeneration procedures. Selection of articles was carried out by two evaluators in Pubmed and Scopus databases, and Outcomes (PICO) method was used to select the relevant articles. Clinical studies reporting the use of CM or ACM for oral soft and hard tissue regeneration were included. The research involved 21 studies conducted on 375 human patients. Seven clinical applications of CM and ACM in oral and periodontal surgery were identified: gingival recession treatment, intrabony and furcation defect treatment, alveolar ridge preservation, keratinized gum width augmentation around dental implants, maxillary sinus membrane repair, and large bone defect reconstruction. CM and ACM were compared to negative controls (conventional surgeries without membrane) or to the following materials: collagen membranes, dense polytetrafluoroethylene membranes, platelet-rich fibrin membranes, amnion membranes, and to a bone substitute. Several studies support the use of CM and ACM as an efficient alternative to current techniques for periodontal and oral soft tissue regeneration procedures. However, further studies are necessary to increase the level of evidence and especially to demonstrate their role for bone regeneration.
Asunto(s)
Amnios/metabolismo , Corion/metabolismo , Regeneración Ósea , Trasplante Óseo , Defectos de Furcación , Humanos , Membranas Artificiales , Fibrina Rica en Plaquetas/metabolismo , Politetrafluoroetileno/química , Procedimientos de Cirugía PlásticaRESUMEN
Thanks to their biological properties, amniotic membrane (AM), and its derivatives are considered as an attractive reservoir of stem cells and biological scaffolds for bone regenerative medicine. The objective of this systematic review was to assess the benefit of using AM and amniotic membrane-derived products for bone regeneration. An electronic search of the MEDLINE-Pubmed database and the Scopus database was carried out and the selection of articles was performed following PRISMA guidelines. This systematic review included 42 articles taking into consideration the studies in which AM, amniotic-derived epithelial cells (AECs), and amniotic mesenchymal stromal cells (AMSCs) show promising results for bone regeneration in animal models. Moreover, this review also presents some commercialized products derived from AM and discusses their application modalities. Finally, AM therapeutic benefit is highlighted in the reported clinical studies. This study is the first one to systematically review the therapeutic benefits of AM and amniotic membrane-derived products for bone defect healing. The AM is a promising alternative to the commercially available membranes used for guided bone regeneration. Additionally, AECs and AMSCs associated with an appropriate scaffold may also be ideal candidates for tissue engineering strategies applied to bone healing. Here, we summarized these findings and highlighted the relevance of these different products for bone regeneration.
RESUMEN
An important component of tissue engineering (TE) is the supporting matrix upon which cells and tissues grow, also known as the scaffold. Scaffolds must easily integrate with host tissue and provide an excellent environment for cell growth and differentiation. Human amniotic membrane (hAM) is considered as a surgical waste without ethical issue, so it is a highly abundant, cost-effective, and readily available biomaterial. It has biocompatibility, low immunogenicity, adequate mechanical properties (permeability, stability, elasticity, flexibility, resorbability), and good cell adhesion. It exerts anti-inflammatory, antifibrotic, and antimutagenic properties and pain-relieving effects. It is also a source of growth factors, cytokines, and hAM cells with stem cell properties. This important source for scaffolding material has been widely studied and used in various areas of tissue repair: corneal repair, chronic wound treatment, genital reconstruction, tendon repair, microvascular reconstruction, nerve repair, and intraoral reconstruction. Depending on the targeted application, hAM has been used as a simple scaffold or seeded with various types of cells that are able to grow and differentiate. Thus, this natural biomaterial offers a wide range of applications in TE applications. Here, we review hAM properties as a biocompatible and degradable scaffold. Its use strategies (i.e., alone or combined with cells, cell seeding) and its degradation rate are also presented.