Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Hum Mutat ; 43(4): 477-486, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35112411

RESUMEN

The synthesis of cytochrome c oxidase 2 (SCO2 ) gene encodes for a mitochondrial located metallochaperone essential for the synthesis of the cytochrome c oxidase (COX) subunit 2. Recessive mutations in SCO2 have been reported in several cases with fatal infantile cardioencephalomyopathy with COX deficiency and in only four cases with axonal neuropathy. Here, we identified a homozygous pathogenic variant (c.361G > C; p.[Gly121Arg]) in SCO2 in two brothers with isolated axonal motor neuropathy. To address pathogenicity of the amino acid substitution, biochemical studies were performed and revealed increased level of the mutant SCO2 -protein and dysregulation of COX subunits in leukocytes and moreover unraveled decrease of proteins involved in the manifestation of neuropathies. Hence, our combined data strengthen the concept of SCO2 being causative for a very rare form of axonal neuropathy, expand its molecular genetic spectrum and provide first biochemical insights into the underlying pathophysiology.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas Portadoras/genética , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Masculino , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/genética , Mutación , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Hermanos
2.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34360601

RESUMEN

Mutations in the SPATA5 gene are associated with epilepsy, hearing loss and mental retardation syndrome (EHLMRS). While SPATA5 is ubiquitously expressed and is attributed a role within mitochondrial morphogenesis during spermatogenesis, there is only limited knowledge about the associated muscular and molecular pathology. This study reports on a comprehensive workup of muscular pathology, including proteomic profiling and microscopic studies, performed on an 8-year-old girl with typical clinical presentation of EHLMRS, where exome analysis revealed two clinically relevant, compound-heterozygous variants in SPATA5. Proteomic profiling of a quadriceps biopsy showed the dysregulation of 82 proteins, out of which 15 were localized in the mitochondrion, while 19 were associated with diseases presenting with phenotypical overlap to EHLMRS. Histological staining of our patient's muscle biopsy hints towards mitochondrial pathology, while the identification of dysregulated proteins attested to the vulnerability of the cell beyond the mitochondria. Through our study we provide insights into the molecular etiology of EHLMRS and provide further evidence for a muscle pathology associated with SPATA5 deficiency, including a pathological histochemical pattern accompanied by dysregulated protein expression.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Epilepsia/patología , Pérdida Auditiva/patología , Discapacidad Intelectual/patología , Enfermedades Musculares/patología , Mutación , Proteoma/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/deficiencia , Niño , Epilepsia/etiología , Epilepsia/metabolismo , Femenino , Pérdida Auditiva/etiología , Pérdida Auditiva/metabolismo , Humanos , Discapacidad Intelectual/etiología , Discapacidad Intelectual/metabolismo , Enfermedades Musculares/complicaciones , Enfermedades Musculares/metabolismo , Proteoma/análisis , Síndrome
3.
Mol Neurobiol ; 60(5): 2602-2618, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36692708

RESUMEN

PPP1R21 acts as a co-factor for protein phosphatase 1 (PP1), an important serine/threonine phosphatase known to be essential for cell division, control of glycogen metabolism, protein synthesis, and muscle contractility. Bi-allelic pathogenic variants in PPP1R21 were linked to a neurodevelopmental disorder with hypotonia, facial dysmorphism, and brain abnormalities (NEDHFBA) with pediatric onset. Functional studies unraveled impaired vesicular transport as being part of PPP1R21-related pathomechanism. To decipher further the pathophysiological processes leading to the clinical manifestation of NEDHFBA, we investigated the proteomic signature of fibroblasts derived from the first NEDHFBA patient harboring a splice-site mutation in PPP1R21 and presenting with a milder phenotype. Proteomic findings and further functional studies demonstrate a profound activation of the ubiquitin-proteasome system with presence of protein aggregates and impact on cellular fitness and moreover suggest a cross-link between activation of the proteolytic system and cytoskeletal architecture (including filopodia) as exemplified on paradigmatic proteins including actin, thus extending the pathophysiological spectrum of the disease. In addition, the proteomic signature of PPP1R21-mutant fibroblasts displayed a dysregulation of a variety of proteins of neurological relevance. This includes increase proteins which might act toward antagonization of cellular stress burden in terms of pro-survival, a molecular finding which might accord with the presentation of a milder phenotype of our NEDHFBA patient.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Habla , Humanos , Actinas , Debilidad Muscular , Mutación/genética , Fenotipo , Proteína Fosfatasa 1/genética , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA