RESUMEN
BACKGROUND AND AIMS: In patients with atrial fibrillation (AF), recurrent AF and sinus rhythm during follow-up are determined by interactions between cardiovascular disease processes and rhythm-control therapy. Predictors of attaining sinus rhythm at follow-up are not well known. METHODS: To quantify the interaction between cardiovascular disease processes and rhythm outcomes, 14 biomarkers reflecting AF-related cardiovascular disease processes in 1586 patients in the EAST-AFNET 4 biomolecule study (71 years old, 46% women) were quantified at baseline. Mixed logistic regression models including clinical features were constructed for each biomarker. Biomarkers were interrogated for interaction with early rhythm control. Outcome was sinus rhythm at 12 months. Results were validated at 24 months and in external datasets. RESULTS: Higher baseline concentrations of three biomarkers were independently associated with a lower chance of sinus rhythm at 12 months: angiopoietin 2 (ANGPT2) (odds ratio [OR] 0.76 [95% confidence interval 0.65-0.89], p=0.001), bone morphogenetic protein 10 (BMP10) (OR 0.83 [0.71-0.97], p=0.017) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) (OR 0.73 [0.60-0.88], p=0.001). Analysis of rhythm at 24 months confirmed the results. Early rhythm control interacted with the predictive potential of NT-proBNP (pinteraction=0.033). The predictive effect of NT-proBNP was reduced in patients randomized to early rhythm control (usual care: OR 0.64 [0.51-0.80], p<0.001; early rhythm control: OR 0.90 [0.69-1.18], p=0.453). External validation confirmed that low concentrations of ANGPT2, BMP10 and NT-proBNP predict sinus rhythm during follow-up. CONCLUSIONS: Low concentrations of ANGPT2, BMP10 and NT-proBNP identify patients with AF who are likely to attain sinus rhythm during follow-up. The predictive ability of NT-proBNP is attenuated in patients receiving rhythm control.
RESUMEN
Androgenic anabolic steroids (AAS) are commonly abused by young men. Male sex and increased AAS levels are associated with earlier and more severe manifestation of common cardiac conditions, such as atrial fibrillation, and rare ones, such as arrhythmogenic right ventricular cardiomyopathy (ARVC). Clinical observations suggest a potential atrial involvement in ARVC. Arrhythmogenic right ventricular cardiomyopathy is caused by desmosomal gene defects, including reduced plakoglobin expression. Here, we analysed clinical records from 146 ARVC patients to identify that ARVC is more common in males than females. Patients with ARVC also had an increased incidence of atrial arrhythmias and P wave changes. To study desmosomal vulnerability and the effects of AAS on the atria, young adult male mice, heterozygously deficient for plakoglobin (Plako+/-), and wild type (WT) littermates were chronically exposed to 5α-dihydrotestosterone (DHT) or placebo. The DHT increased atrial expression of pro-hypertrophic, fibrotic and inflammatory transcripts. In mice with reduced plakoglobin, DHT exaggerated P wave abnormalities, atrial conduction slowing, sodium current depletion, action potential amplitude reduction and the fall in action potential depolarization rate. Super-resolution microscopy revealed a decrease in NaV1.5 membrane clustering in Plako+/- atrial cardiomyocytes after DHT exposure. In summary, AAS combined with plakoglobin deficiency cause pathological atrial electrical remodelling in young male hearts. Male sex is likely to increase the risk of atrial arrhythmia, particularly in those with desmosomal gene variants. This risk is likely to be exaggerated further by AAS use. KEY POINTS: Androgenic male sex hormones, such as testosterone, might increase the risk of atrial fibrillation in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), which is often caused by desmosomal gene defects (e.g. reduced plakoglobin expression). In this study, we observed a significantly higher proportion of males who had ARVC compared with females, and atrial arrhythmias and P wave changes represented a common observation in advanced ARVC stages. In mice with reduced plakoglobin expression, chronic administration of 5α-dihydrotestosterone led to P wave abnormalities, atrial conduction slowing, sodium current depletion and a decrease in membrane-localized NaV1.5 clusters. 5α-Dihydrotestosterone, therefore, represents a stimulus aggravating the pro-arrhythmic phenotype in carriers of desmosomal mutations and can affect atrial electrical function.
Asunto(s)
gamma Catenina , Animales , Masculino , Femenino , Ratones , Humanos , gamma Catenina/genética , gamma Catenina/metabolismo , Adulto , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/metabolismo , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/fisiopatología , Displasia Ventricular Derecha Arritmogénica/metabolismo , Dihidrotestosterona/farmacología , Andrógenos/farmacología , Potenciales de Acción/efectos de los fármacos , Ratones Endogámicos C57BL , Adulto Joven , Anabolizantes/farmacología , Esteroides Anabólicos AndrogénicosRESUMEN
AIMS: Different disease processes can combine to cause atrial fibrillation (AF). Their contribution to recurrent AF after ablation in patients is not known. Cardiovascular processes associated with recurrent AF after AF ablation were determined by quantifying biomolecules related to inflammation, metabolism, proliferation, fibrosis, shear stress, atrial pressure, and others in the AXAFA biomolecule study. METHODS AND RESULTS: Twelve circulating cardiovascular biomolecules (ANGPT2, BMP10, CA125, hsCRP, ESM1, FABP3, FGF23, GDF15, IGFBP7, IL6, NT-proBNP, and hsTnT) were quantified in plasma samples obtained prior to a first AF ablation using high-throughput, high-precision assays. Cox regression was used to identify biomolecules associated with recurrent AF during the first 3 months after AF ablation. In 433 patients (64 years [58, 70]; 33% women), baseline concentrations of ANGPT2, BMP10, hsCRP, FGF23, FABP3, GDF15, and NT-proBNP were elevated in patients with recurrent AF (120/433; 28%). After adjustment for 11 clinical features and randomized treatment, elevated NT-proBNP [hazard ratio (HR) 1.58, 95% confidence interval (1.29, 1.94)], ANGPT2 [HR 1.37, (1.12, 1.67)], and BMP10 [HR 1.24 (1.02, 1.51)] remained associated with recurrent AF. Concentrations of ANGPT2, BMP10, and NT-proBNP decreased in patients who remained arrhythmia free, but not in patients with recurrent AF, highlighting their connection to AF. The other eight biomarkers showed unchanged concentrations. CONCLUSION: Elevated concentrations of ANGPT2, BMP10, and NT-proBNP are associated with recurrent AF after a first AF ablation, suggesting that processes linked to disturbed cardiomyocyte metabolism, altered atrial shear stress, and increased load contribute to AF after AF ablation in patients.
Asunto(s)
Fibrilación Atrial , Humanos , Femenino , Masculino , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/cirugía , Fibrilación Atrial/complicaciones , Proteína C-Reactiva , Atrios Cardíacos , Péptido Natriurético Encefálico , Biomarcadores , Modelos de Riesgos Proporcionales , Fragmentos de Péptidos , Proteínas Morfogenéticas ÓseasRESUMEN
AIMS: Clinical concerns exist about the potential proarrhythmic effects of the sodium channel blockers (SCBs) flecainide and propafenone in patients with cardiovascular disease. Sodium channel blockers were used to deliver early rhythm control (ERC) therapy in EAST-AFNET 4. METHODS AND RESULTS: We analysed the primary safety outcome (death, stroke, or serious adverse events related to rhythm control therapy) and primary efficacy outcome (cardiovascular death, stroke, and hospitalization for worsening of heart failure (HF) or acute coronary syndrome) during SCB intake for patients with ERC (n = 1395) in EAST-AFNET 4. The protocol discouraged flecainide and propafenone in patients with reduced left ventricular ejection fraction and suggested stopping therapy upon QRS prolongation >25% on therapy. Flecainide or propafenone was given to 689 patients [age 69 (8) years; CHA2DS2-VASc 3.2 (1); 177 with HF; 41 with prior myocardial infarction, coronary artery bypass graft, or percutaneous coronary intervention; 26 with left ventricular hypertrophy >15â mm; median therapy duration 1153 [237, 1828] days]. The primary efficacy outcome occurred less often in patients treated with SCB [3/100 (99/3316) patient-years] than in patients who never received SCB [SCBnever 4.9/100 (150/3083) patient-years, P < 0.001]. There were numerically fewer primary safety outcomes in patients receiving SCB [2.9/100 (96/3359) patient-years] than in SCBnever patients [4.2/100 (135/3220) patient-years, adjusted P = 0.015]. Sinus rhythm at 2 years was similar between groups [SCB 537/610 (88); SCBnever 472/579 (82)]. CONCLUSION: Long-term therapy with flecainide or propafenone appeared to be safe in the EAST-AFNET 4 trial to deliver effective ERC therapy, including in selected patients with stable cardiovascular disease such as coronary artery disease and stable HF. Clinical Trial Registration ISRCTN04708680, NCT01288352, EudraCT2010-021258-20, www.easttrial.org.
Asunto(s)
Antiarrítmicos , Flecainida , Bloqueadores de los Canales de Sodio , Humanos , Anciano , Masculino , Femenino , Resultado del Tratamiento , Persona de Mediana Edad , Flecainida/uso terapéutico , Flecainida/efectos adversos , Antiarrítmicos/uso terapéutico , Antiarrítmicos/efectos adversos , Bloqueadores de los Canales de Sodio/uso terapéutico , Bloqueadores de los Canales de Sodio/efectos adversos , Fibrilación Atrial/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Factores de Tiempo , Frecuencia Cardíaca/efectos de los fármacos , Accidente CerebrovascularRESUMEN
AIMS: Recent trial data demonstrate beneficial effects of active rhythm management in patients with atrial fibrillation (AF) and support the concept that a low arrhythmia burden is associated with a low risk of AF-related complications. The aim of this document is to summarize the key outcomes of the 9th AFNET/EHRA Consensus Conference of the Atrial Fibrillation NETwork (AFNET) and the European Heart Rhythm Association (EHRA). METHODS AND RESULTS: Eighty-three international experts met in Münster for 2 days in September 2023. Key findings are as follows: (i) Active rhythm management should be part of the default initial treatment for all suitable patients with AF. (ii) Patients with device-detected AF have a low burden of AF and a low risk of stroke. Anticoagulation prevents some strokes and also increases major but non-lethal bleeding. (iii) More research is needed to improve stroke risk prediction in patients with AF, especially in those with a low AF burden. Biomolecules, genetics, and imaging can support this. (iv) The presence of AF should trigger systematic workup and comprehensive treatment of concomitant cardiovascular conditions. (v) Machine learning algorithms have been used to improve detection or likely development of AF. Cooperation between clinicians and data scientists is needed to leverage the potential of data science applications for patients with AF. CONCLUSIONS: Patients with AF and a low arrhythmia burden have a lower risk of stroke and other cardiovascular events than those with a high arrhythmia burden. Combining active rhythm control, anticoagulation, rate control, and therapy of concomitant cardiovascular conditions can improve the lives of patients with AF.
Asunto(s)
Fibrilación Atrial , Accidente Cerebrovascular , Humanos , Fibrilación Atrial/complicaciones , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/epidemiología , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/prevención & control , Riesgo , Hemorragia , Anticoagulantes/uso terapéuticoRESUMEN
[Figure: see text].
Asunto(s)
Fibrilación Atrial/metabolismo , Miocardio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Anciano , Animales , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/genética , Fibrilación Atrial/patología , Células Cultivadas , Femenino , Fibrosis , Humanos , Masculino , Mesalamina/farmacología , Mesalamina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocardio/patología , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Osteopontina/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/genéticaRESUMEN
Despite marked progress in the management of atrial fibrillation (AF), detecting AF remains difficult and AF-related complications cause unacceptable morbidity and mortality even on optimal current therapy. This document summarizes the key outcomes of the 8th AFNET/EHRA Consensus Conference of the Atrial Fibrillation NETwork (AFNET) and the European Heart Rhythm Association (EHRA). Eighty-three international experts met in Hamburg for 2 days in October 2021. Results of the interdisciplinary, hybrid discussions in breakout groups and the plenary based on recently published and unpublished observations are summarized in this consensus paper to support improved care for patients with AF by guiding prevention, individualized management, and research strategies. The main outcomes are (i) new evidence supports a simple, scalable, and pragmatic population-based AF screening pathway; (ii) rhythm management is evolving from therapy aimed at improving symptoms to an integrated domain in the prevention of AF-related outcomes, especially in patients with recently diagnosed AF; (iii) improved characterization of atrial cardiomyopathy may help to identify patients in need for therapy; (iv) standardized assessment of cognitive function in patients with AF could lead to improvement in patient outcomes; and (v) artificial intelligence (AI) can support all of the above aims, but requires advanced interdisciplinary knowledge and collaboration as well as a better medico-legal framework. Implementation of new evidence-based approaches to AF screening and rhythm management can improve outcomes in patients with AF. Additional benefits are possible with further efforts to identify and target atrial cardiomyopathy and cognitive impairment, which can be facilitated by AI.
Asunto(s)
Fibrilación Atrial , Accidente Cerebrovascular , Humanos , Fibrilación Atrial/complicaciones , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/terapia , Inteligencia Artificial , Diagnóstico Precoz , Consenso , Cognición , Accidente Cerebrovascular/prevención & controlRESUMEN
Atrial fibrillation (AF) affects over 1% of the population and is a leading cause of stroke and heart failure in the elderly. A feared side effect of sodium channel blocker therapy, ventricular pro-arrhythmia, appears to be relatively rare in patients with AF. The biophysical reasons for this relative safety of sodium blockers are not known. Our data demonstrates intrinsic differences between atrial and ventricular cardiac voltage-gated sodium currents (INa), leading to reduced maximum upstroke velocity of action potential and slower conduction, in left atria compared to ventricle. Reduced atrial INa is only detected at physiological membrane potentials and is driven by alterations in sodium channel biophysical properties and not by NaV1.5 protein expression. Flecainide displayed greater inhibition of atrial INa, greater reduction of maximum upstroke velocity of action potential, and slowed conduction in atrial cells and tissue. Our work highlights differences in biophysical properties of sodium channels in left atria and ventricles and their response to flecainide. These differences can explain the relative safety of sodium channel blocker therapy in patients with atrial fibrillation.
Asunto(s)
Fibrilación Atrial , Flecainida , Potenciales de Acción , Anciano , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Fibrilación Atrial/metabolismo , Flecainida/metabolismo , Flecainida/farmacología , Flecainida/uso terapéutico , Atrios Cardíacos/metabolismo , Humanos , Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismoRESUMEN
BACKGROUND: Kinase oxidation is a critical signaling mechanism through which changes in the intracellular redox state alter cardiac function. In the myocardium, PKARIα (type-1 protein kinase A) can be reversibly oxidized, forming interprotein disulfide bonds in the holoenzyme complex. However, the effect of PKARIα disulfide formation on downstream signaling in the heart, particularly under states of oxidative stress such as ischemia and reperfusion (I/R), remains unexplored. METHODS: Atrial tissue obtained from patients before and after cardiopulmonary bypass and reperfusion and left ventricular (LV) tissue from mice subjected to I/R or sham surgery were used to assess PKARIα disulfide formation by immunoblot. To determine the effect of disulfide formation on PKARIα catalytic activity and subcellular localization, live-cell fluorescence imaging and stimulated emission depletion super-resolution microscopy were performed in prkar1 knock-out mouse embryonic fibroblasts, neonatal myocytes, or adult LV myocytes isolated from "redox dead" (Cys17Ser) PKARIα knock-in mice and their wild-type littermates. Comparison of intracellular calcium dynamics between genotypes was assessed in fura2-loaded LV myocytes, whereas I/R-injury was assessed ex vivo. RESULTS: In both humans and mice, myocardial PKARIα disulfide formation was found to be significantly increased (2-fold in humans, P=0.023; 2.4-fold in mice, P<0.001) in response to I/R in vivo. In mouse LV cardiomyocytes, disulfide-containing PKARIα was not found to impact catalytic activity, but instead led to enhanced AKAP (A-kinase anchoring protein) binding with preferential localization of the holoenzyme to the lysosome. Redox-dependent regulation of lysosomal two-pore channels by PKARIα was sufficient to prevent global calcium release from the sarcoplasmic reticulum in LV myocytes, without affecting intrinsic ryanodine receptor leak or phosphorylation. Absence of I/R-induced PKARIα disulfide formation in "redox dead" knock-in mouse hearts resulted in larger infarcts (2-fold, P<0.001) and a concomitant reduction in LV contractile recovery (1.6-fold, P<0.001), which was prevented by administering the lysosomal two-pore channel inhibitor Ned-19 at the time of reperfusion. CONCLUSIONS: Disulfide modification targets PKARIα to the lysosome, where it acts as a gatekeeper for two-pore channel-mediated triggering of global calcium release. In the postischemic heart, this regulatory mechanism is critical for protection from extensive injury and offers a novel target for the design of cardioprotective therapeutics.
Asunto(s)
Calcio/metabolismo , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Daño por Reperfusión Miocárdica/terapia , Animales , Humanos , Ratones , Oxidación-ReducciónRESUMEN
Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.
Asunto(s)
Enfermedades Cardiovasculares , Células Madre Pluripotentes Inducidas , Animales , Humanos , Técnicas Electrofisiológicas Cardíacas , Arritmias Cardíacas/etiología , Miocitos CardíacosRESUMEN
Genome-wide association studies have uncovered over a 100 genetic loci associated with atrial fibrillation (AF), the most common arrhythmia. Many of the top AF-associated loci harbor key cardiac transcription factors, including PITX2, TBX5, PRRX1, and ZFHX3. Moreover, the vast majority of the AF-associated variants lie within noncoding regions of the genome where causal variants affect gene expression by altering the activity of transcription factors and the epigenetic state of chromatin. In this review, we discuss a transcriptional regulatory network model for AF defined by effector genes in Genome-wide association studies loci. We describe the current state of the field regarding the identification and function of AF-relevant gene regulatory networks, including variant regulatory elements, dose-sensitive transcription factor functionality, target genes, and epigenetic states. We illustrate how altered transcriptional networks may impact cardiomyocyte function and ionic currents that impact AF risk. Last, we identify the need for improved tools to identify and functionally test transcriptional components to define the links between genetic variation, epigenetic gene regulation, and atrial function.
Asunto(s)
Fibrilación Atrial/genética , Epigénesis Genética , Redes Reguladoras de Genes , Animales , Fibrilación Atrial/metabolismo , Sitios Genéticos , Humanos , TranscriptomaRESUMEN
BACKGROUND: Large-scale screening for atrial fibrillation (AF) requires reliable methods to identify at-risk populations. Using an experimental semi-quantitative biomarker assay, B-type natriuretic peptide (BNP) and fibroblast growth factor 23 (FGF23) were recently identified as the most suitable biomarkers for detecting AF in combination with simple morphometric parameters (age, sex, and body mass index [BMI]). In this study, we validated the AF model using standardised, high-throughput, high-sensitivity biomarker assays. METHODS AND FINDINGS: For this study, 1,625 consecutive patients with either (1) diagnosed AF or (2) sinus rhythm with CHA2DS2-VASc score of 2 or more were recruited from a large teaching hospital in Birmingham, West Midlands, UK, between September 2014 and February 2018. Seven-day ambulatory ECG monitoring excluded silent AF. Patients with tachyarrhythmias apart from AF and incomplete cases were excluded. AF was diagnosed according to current clinical guidelines and confirmed by ECG. We developed a high-throughput, high-sensitivity assay for FGF23, quantified plasma N-terminal pro-B-type natriuretic peptide (NT-proBNP) and FGF23, and compared results to the previously used multibiomarker research assay. Data were fitted to the previously derived model, adjusting for differences in measurement platforms and known confounders (heart failure and chronic kidney disease). In 1,084 patients (46% with AF; median [Q1, Q3] age 70 [60, 78] years, median [Q1, Q3] BMI 28.8 [25.1, 32.8] kg/m2, 59% males), patients with AF had higher concentrations of NT-proBNP (median [Q1, Q3] per 100 pg/ml: with AF 12.00 [4.19, 30.15], without AF 4.25 [1.17, 15.70]; p < 0.001) and FGF23 (median [Q1, Q3] per 100 pg/ml: with AF 1.93 [1.30, 4.16], without AF 1.55 [1.04, 2.62]; p < 0.001). Univariate associations remained after adjusting for heart failure and estimated glomerular filtration rate, known confounders of NT-proBNP and FGF23. The fitted model yielded a C-statistic of 0.688 (95% CI 0.656, 0.719), almost identical to that of the derived model (C-statistic 0.691; 95% CI 0.638, 0.744). The key limitation is that this validation was performed in a cohort that is very similar demographically to the one used in model development, calling for further external validation. CONCLUSIONS: Age, sex, and BMI combined with elevated NT-proBNP and elevated FGF23, quantified on a high-throughput platform, reliably identify patients with AF. TRIAL REGISTRATION: Registry IRAS ID 97753 Health Research Authority (HRA), United Kingdom.
Asunto(s)
Fibrilación Atrial/sangre , Biomarcadores/sangre , Factores de Crecimiento de Fibroblastos/sangre , Insuficiencia Cardíaca/diagnóstico , Péptido Natriurético Encefálico/sangre , Anciano , Fibrilación Atrial/diagnóstico , Estudios de Cohortes , Femenino , Factor-23 de Crecimiento de Fibroblastos , Insuficiencia Cardíaca/sangre , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Factores de RiesgoRESUMEN
AIMS: Genetically altered mice are powerful models to investigate mechanisms of atrial arrhythmias, but normal ranges for murine atrial electrophysiology have not been robustly characterized. METHODS AND RESULTS: We analyzed results from 221 electrophysiological (EP) studies in isolated, Langendorff-perfused hearts of wildtype mice (114 female, 107 male) from 2.5 to 17.7 months (mean 7 months) with different genetic backgrounds (C57BL/6, FVB/N, MF1, 129/Sv, Swiss agouti). Left atrial monophasic action potential duration (LA-APD), interatrial activation time (IA-AT), and atrial effective refractory period (ERP) were summarized at different pacing cycle lengths (PCLs). Factors influencing atrial electrophysiology including genetic background, sex, and age were determined. LA-APD70 was 18 ± 0.5 ms, atrial ERP was 27 ± 0.8 ms, and IA-AT was 17 ± 0.5 ms at 100 ms PCL. LA-APD was longer with longer PCL (+17% from 80 to 120 ms PCL for APD70), while IA-AT decreased (-7% from 80 to 120 ms PCL). Female sex was associated with longer ERP (+14% vs. males). Genetic background influenced atrial electrophysiology: LA-APD70 (-20% vs. average) and atrial ERP (-25% vs. average) were shorter in Swiss agouti background compared to others. LA-APD70 (+25% vs. average) and IA-AT (+44% vs. average) were longer in 129/Sv mice. Atrial ERP was longer in FVB/N (+34% vs. average) and in younger experimental groups below 6 months of age. CONCLUSION: This work defines normal ranges for murine atrial EP parameters. Genetic background has a profound effect on these parameters, at least of the magnitude as those of sex and age. These results can inform the experimental design and interpretation of murine atrial electrophysiology.
Asunto(s)
Fibrilación Atrial , Atrios Cardíacos , Potenciales de Acción , Animales , Arritmias Cardíacas , Fibrilación Atrial/genética , Electrofisiología Cardíaca , Femenino , Antecedentes Genéticos , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
Cardiac arrhythmias are a major cause of death and disability. A large number of experimental cell and animal models have been developed to study arrhythmogenic diseases. These models have provided important insights into the underlying arrhythmia mechanisms and translational options for their therapeutic management. This position paper from the ESC Working Group on Cardiac Cellular Electrophysiology provides an overview of (i) currently available in vitro, ex vivo, and in vivo electrophysiological research methodologies, (ii) the most commonly used experimental (cellular and animal) models for cardiac arrhythmias including relevant species differences, (iii) the use of human cardiac tissue, induced pluripotent stem cell (hiPSC)-derived and in silico models to study cardiac arrhythmias, and (iv) the availability, relevance, limitations, and opportunities of these cellular and animal models to recapitulate specific acquired and inherited arrhythmogenic diseases, including atrial fibrillation, heart failure, cardiomyopathy, myocarditis, sinus node, and conduction disorders and channelopathies. By promoting a better understanding of these models and their limitations, this position paper aims to improve the quality of basic research in cardiac electrophysiology, with the ultimate goal to facilitate the clinical translation and application of basic electrophysiological research findings on arrhythmia mechanisms and therapies.
Asunto(s)
Fibrilación Atrial , Técnicas Electrofisiológicas Cardíacas , Animales , Electrofisiología Cardíaca , Fenómenos Electrofisiológicos , Humanos , Modelos TeóricosRESUMEN
AIMS: The risk of developing atrial fibrillation (AF) and its complications continues to increase, despite good progress in preventing AF-related strokes. METHODS AND RESULTS: This article summarizes the outcomes of the 7th Consensus Conference of the Atrial Fibrillation NETwork (AFNET) and the European Heart Rhythm Association (EHRA) held in Lisbon in March 2019. Sixty-five international AF specialists met to present new data and find consensus on pressing issues in AF prevention, management and future research to improve care for patients with AF and prevent AF-related complications. This article is the main outcome of an interactive, iterative discussion between breakout specialist groups and the meeting plenary. AF patients have dynamic risk profiles requiring repeated assessment and risk-based therapy stratification to optimize quality of care. Interrogation of deeply phenotyped datasets with outcomes will lead to a better understanding of the cardiac and systemic effects of AF, interacting with comorbidities and predisposing factors, enabling stratified therapy. New proposals include an algorithm for the acute management of patients with AF and heart failure, a call for a refined, data-driven assessment of stroke risk, suggestions for anticoagulation use in special populations, and a call for rhythm control therapy selection based on risk of AF recurrence. CONCLUSION: The remaining morbidity and mortality in patients with AF needs better characterization. Likely drivers of the remaining AF-related problems are AF burden, potentially treatable by rhythm control therapy, and concomitant conditions, potentially treatable by treating these conditions. Identifying the drivers of AF-related complications holds promise for stratified therapy.
Asunto(s)
Fibrilación Atrial , Accidente Cerebrovascular , Anticoagulantes/efectos adversos , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/epidemiología , Fibrilación Atrial/terapia , Consenso , Humanos , Medición de Riesgo , Factores de Riesgo , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/prevención & control , Resultado del TratamientoRESUMEN
BACKGROUND: Coronary microvascular dysfunction (CMD) is common in end-stage renal disease (ESRD) and is an adverse prognostic marker. Coronary flow velocity reserve (CFVR) is a measure of coronary microvascular function and can be assessed using Doppler echocardiography. Reduced CFVR in ESRD has been attributed to factors such as diabetes, hypertension and left ventricular hypertrophy. The contributory role of other mediators important in the development of cardiovascular disease in ESRD has not been studied. The aim of this study was to examine the prevalence of CMD in a cohort of kidney transplant candidates and to look for associations of CMD with markers of anaemia, bone mineral metabolism and chronic inflammation. METHODS: Twenty-two kidney transplant candidates with ESRD were studied with myocardial contrast echocardiography, Doppler CFVR assessment and serum multiplex immunoassay analysis. Individuals with diabetes, uncontrolled hypertension or ischaemic heart disease were excluded. RESULTS: 7/22 subjects had CMD (defined as CFVR < 2). Demographic, laboratory and echocardiographic parameters and serum biomarkers were similar between subjects with and without CMD. Subjects with CMD had significantly lower haemoglobin than subjects without CMD (102 g/L ± 12 vs. 117 g/L ± 11, p = 0.008). There was a positive correlation between haemoglobin and CFVR (r = 0.7, p = 0.001). Similar results were seen for haematocrit. In regression analyses, haemoglobin was an independent predictor of CFVR (ß = 0.041 95% confidence interval 0.012-0.071, p = 0.009) and of CFVR < 2 (odds ratio 0.85 95% confidence interval 0.74-0.98, p = 0.022). CONCLUSIONS: Among kidney transplant candidates with ESRD, there is a high prevalence of CMD, despite the absence of traditional risk factors. Anaemia may be a potential driver of microvascular dysfunction in this population and requires further investigation.
Asunto(s)
Anemia/epidemiología , Circulación Coronaria , Enfermedad Coronaria/epidemiología , Fallo Renal Crónico/epidemiología , Microcirculación , Adulto , Anciano , Anemia/sangre , Anemia/diagnóstico , Enfermedad Coronaria/diagnóstico por imagen , Enfermedad Coronaria/fisiopatología , Estudios Transversales , Inglaterra/epidemiología , Femenino , Humanos , Fallo Renal Crónico/diagnóstico , Fallo Renal Crónico/cirugía , Trasplante de Riñón , Masculino , Persona de Mediana Edad , Prevalencia , Pronóstico , Medición de Riesgo , Factores de RiesgoRESUMEN
BACKGROUND: Adherence rates of preventative medication for cardiovascular disease (CVD) have been reported as 57%, and approximately 9% of all CVD events in Europe are attributable to poor medication adherence. Mobile health technologies, particularly mobile apps, have the potential to improve medication adherence and clinical outcomes. OBJECTIVE: The objective of this study is to assess the effects of mobile health care apps on medication adherence and health-related outcomes in patients with CVD. This study also evaluates apps' functionality and usability and the involvement of health care professionals in their use. METHODS: Electronic databases (MEDLINE [Ovid], PubMed Central, Cochrane Library, CINAHL Plus, PsycINFO [Ovid], Embase [Ovid], and Google Scholar) were searched for randomized controlled trials (RCTs) to investigate app-based interventions aimed at improving medication adherence in patients with CVD. RCTs published in English from inception to January 2020 were reviewed. The Cochrane risk of bias tool was used to assess the included studies. Meta-analysis was performed for clinical outcomes and medication adherence, with meta-regression analysis used to evaluate the impact of app intervention duration on medication adherence. RESULTS: This study included 16 RCTs published within the last 6 years. In total, 12 RCTs reported medication adherence as the primary outcome, which is the most commonly self-reported adherence. The duration of the interventions ranged from 1 to 12 months, and sample sizes ranged from 24 to 412. Medication adherence rates showed statistically significant improvements in 9 RCTs when compared with the control, and meta-analysis of the 6 RCTs reporting continuous data showed a significant overall effect in favor of the app intervention (mean difference 0.90, 95% CI 0.03-1.78) with a high statistical heterogeneity (I2=93.32%). Moreover, 9 RCTs assessed clinical outcomes and reported an improvement in systolic blood pressure, diastolic blood pressure, total cholesterol, and low-density lipoprotein cholesterol levels in the intervention arm. Meta-analysis of these clinical outcomes from 6 RCTs favored app interventions, but none were significant. In the 7 trials evaluating app usability, all were found to be acceptable. There was a great variation in the app characteristics. A total of 10 RCTs involved health care professionals, mainly physicians and nurses, in the app-based interventions. The apps had mixed functionality: 2 used education, 7 delivered reminders, and 7 provided reminders in combination with educational support. CONCLUSIONS: Apps tended to increase medication adherence, but interventions varied widely in design, content, and delivery. Apps have an acceptable degree of usability; yet the app characteristics conferring usability and effectiveness are ill-defined. Future large-scale studies should focus on identifying the essential active components of successful apps. TRIAL REGISTRATION: PROSPERO International Prospective Register of Systematic Reviews CRD42019121385; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=121385.
Asunto(s)
Enfermedades Cardiovasculares , Aplicaciones Móviles , Telemedicina , Presión Sanguínea , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Humanos , Cumplimiento de la MedicaciónRESUMEN
Despite recent progress in the understanding of cardiac ion channel function and its role in inherited forms of ventricular arrhythmias, the molecular basis of cardiac conduction disorders often remains unresolved. We aimed to elucidate the genetic background of familial atrioventricular block (AVB) using a whole exome sequencing (WES) approach. In monozygotic twins with a third-degree AVB and in another, unrelated family with first-degree AVB, we identified a heterozygous nonsense mutation in the POPDC2 gene causing a premature stop at position 188 (POPDC2W188â), deleting parts of its cAMP binding-domain. Popeye-domain containing (POPDC) proteins are predominantly expressed in the skeletal muscle and the heart, with particularly high expression of POPDC2 in the sinoatrial node of the mouse. We now show by quantitative PCR experiments that in the human heart the POPDC-modulated two-pore domain potassium (K2P) channel TREK-1 is preferentially expressed in the atrioventricular node. Co-expression studies in Xenopus oocytes revealed that POPDC2W188â causes a loss-of-function with impaired TREK-1 modulation. Consistent with the high expression level of POPDC2 in the murine sinoatrial node, POPDC2W188â knock-in mice displayed stress-induced sinus bradycardia and pauses, a phenotype that was previously also reported for POPDC2 and TREK-1 knock-out mice. We propose that the POPDC2W188â loss-of-function mutation contributes to AVB pathogenesis by an aberrant modulation of TREK-1, highlighting that POPDC2 represents a novel arrhythmia gene for cardiac conduction disorders.
Asunto(s)
Trastorno del Sistema de Conducción Cardíaco/genética , Moléculas de Adhesión Celular/genética , Predisposición Genética a la Enfermedad , Proteínas Musculares/genética , Potenciales de Acción , Animales , Bloqueo Atrioventricular/genética , Bradicardia/complicaciones , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Estudios de Asociación Genética , Sistema de Conducción Cardíaco/metabolismo , Sistema de Conducción Cardíaco/patología , Heterocigoto , Homocigoto , Humanos , Leucocitos/metabolismo , Ratones Transgénicos , Proteínas Musculares/metabolismo , Mutación/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , ARN/metabolismo , Nodo Sinoatrial/metabolismo , Estrés Fisiológico , Secuenciación del Exoma , Xenopus laevisRESUMEN
AIMS: We assessed the performance of modelsf (risk scores) for predicting recurrence of atrial fibrillation (AF) in patients who have undergone catheter ablation. METHODS AND RESULTS: Systematic searches of bibliographic databases were conducted (November 2018). Studies were eligible for inclusion if they reported the development, validation, or impact assessment of a model for predicting AF recurrence after ablation. Model performance (discrimination and calibration) measures were extracted. The Prediction Study Risk of Bias Assessment Tool (PROBAST) was used to assess risk of bias. Meta-analysis was not feasible due to clinical and methodological differences between studies, but c-statistics were presented in forest plots. Thirty-three studies developing or validating 13 models were included; eight studies compared two or more models. Common model variables were left atrial parameters, type of AF, and age. Model discriminatory ability was highly variable and no model had consistently poor or good performance. Most studies did not assess model calibration. The main risk of bias concern was the lack of internal validation which may have resulted in overly optimistic and/or biased model performance estimates. No model impact studies were identified. CONCLUSION: Our systematic review suggests that clinical risk prediction of AF after ablation has potential, but there remains a need for robust evaluation of risk factors and development of risk scores.
Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/cirugía , Ablación por Catéter/efectos adversos , Atrios Cardíacos , Humanos , Pronóstico , Recurrencia , Factores de Riesgo , Resultado del TratamientoRESUMEN
AIMS: Study sex-differences in efficacy and safety of atrial fibrillation (AF) ablation. METHODS AND RESULTS: We assessed first AF ablation outcomes on continuous anticoagulation in 633 patients [209 (33%) women and 424 (67%) men] in a pre-specified subgroup analysis of the AXAFA-AFNET 5 trial. We compared the primary outcome (death, stroke or transient ischaemic attack, or major bleeding) and secondary outcomes [change in quality of life (QoL) and cognitive function] 3 months after ablation. Women were older (66 vs. 63 years, P < 0.001), more often symptomatic, had lower QoL and a longer history of AF. No sex differences in ablation procedure were found. Women stayed in hospital longer than men (2.1 ± 2.3 vs. 1.6 ± 1.3 days, P = 0.004). The primary outcome occurred in 19 (9.1%) women and 26 (6.1%) men, P = 0.19. Women experienced more bleeding events requiring medical attention (5.7% vs. 2.1%, P = 0.03), while rates of tamponade (1.0% vs. 1.2%) or intracranial haemorrhage (0.5% vs. 0%) did not differ. Improvement in QoL after ablation was similar between the sexes [12-item Short Form Health Survey (SF-12) physical 5.1% and 5.9%, P = 0.26; and SF-12 mental 3.7% and 1.6%, P = 0.17]. At baseline, mild cognitive impairment according to the Montreal Cognitive Assessment (MoCA) was present in 65 (32%) women and 123 (30%) men and declined to 23% for both sexes at end of follow-up. CONCLUSION: Women and men experience similar improvement in QoL and MoCA score after AF ablation on continuous anticoagulation. Longer hospital stay, a trend towards more nuisance bleeds, and a lower overall QoL in women were the main differences observed.