Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Pharmacol Exp Ther ; 376(2): 190-203, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33203659

RESUMEN

As a gut-restricted, nonabsorbed therapy, polymeric bile acid sequestrants (BAS) play an important role in managing hyperlipidemia and hyperglycemia. Similarly, nonabsorbable sequestrants of dietary phosphate have been used for the management of hyperphosphatemia in end-stage renal disease. To evaluate the potential utility of such polymer sequestrants to treat type 2 diabetes (T2D) and its associated renal and cardiovascular complications, we synthesized a novel polymeric sequestrant, SAR442357, possessing optimized bile acid (BA) and phosphate sequestration characteristics. Long-term treatment of T2D obese cZucker fatty/Spontaneously hypertensive heart failure F1 hybrid (ZSF1) with SAR442357 resulted in enhanced sequestration of BAs and phosphate in the gut, improved glycemic control, lowering of serum cholesterol, and attenuation of diabetic kidney disease (DKD) progression. In comparison, colesevelam, a BAS with poor phosphate binding properties, did not prevent DKD progression, whereas losartan, an angiotensin II receptor blocker that is widely used to treat DKD, showed no effect on hyperglycemia. Analysis of hepatic gene expression levels of the animals treated with SAR442357 revealed upregulation of genes responsible for the biosynthesis of cholesterol and BAs, providing clear evidence of target engagement and mode of action of the new sequestrant. Additional hepatic gene expression pathway changes were indicative of an interruption of the enterohepatic BA cycle. Histopathological analysis of ZSF1 rat kidneys treated with SAR442357 further supported its nephroprotective properties. Collectively, these findings reveal the pharmacological benefit of simultaneous sequestration of BAs and phosphate in treating T2D and its associated comorbidities and cardiovascular complications. SIGNIFICANCE STATEMENT: A new nonabsorbed polymeric sequestrant with optimum phosphate and bile salt sequestration properties was developed as a treatment option for DKD. The new polymeric sequestrant offered combined pharmacological benefits including glucose regulation, lipid lowering, and attenuation of DKD progression in a single therapeutic agent.


Asunto(s)
Antihipertensivos/uso terapéutico , Ácidos y Sales Biliares/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Hidrogeles/uso terapéutico , Hipertensión/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Animales , Antihipertensivos/síntesis química , Colesterol/metabolismo , Hidrogeles/síntesis química , Hipoglucemiantes/síntesis química , Hígado/metabolismo , Fosfatos/metabolismo , Poliaminas/química , Ratas , Ratas Zucker
2.
Peptides ; 136: 170467, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33253774

RESUMEN

Roux-en-Y gastric bypass (RYGB) is the most efficient intervention in morbid obesity and promotes metabolic improvements in several peripheral tissues. However, the underlying molecular mechanisms are still poorly understood. To further understand the effects of RYGB on peripheral tissues transcriptomes, we determined transcriptome signatures in pancreatic islets, adipose and liver tissue from diet-induced obese (DIO) rats model following RYGB. Whereas RYGB led to discrete gene expression changes in pancreatic islets, substantial transcriptome changes were observed in metabolic and immune signaling pathways in adipose tissue and the liver, indicating major gene adaptive responses in fat-storing tissues. Compared to RYGB DIO rats, peripheral tissue transcriptome signatures were markedly different in caloric restricted weight matching DIO rats, implying that caloric restriction paradigms do not reflect transcriptomic regulations of RYGB induced weight loss. The present gene expression study may serve as a basis for further investigations into molecular regulatory effects in peripheral tissues following RYGB-induced weight loss.


Asunto(s)
Resistencia a la Insulina/genética , Hígado/metabolismo , Obesidad Mórbida/genética , Obesidad/genética , Transcriptoma/genética , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Derivación Gástrica , Humanos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Islotes Pancreáticos/cirugía , Hígado/patología , Masculino , Obesidad/etiología , Obesidad/patología , Obesidad/cirugía , Obesidad Mórbida/metabolismo , Obesidad Mórbida/patología , Obesidad Mórbida/cirugía , Ratas , Ratas Sprague-Dawley , Pérdida de Peso/genética
3.
J Clin Endocrinol Metab ; 106(2): e966-e981, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-33135737

RESUMEN

CONTEXT: The mechanisms underlying Roux-en-Y gastric bypass (RYGB) surgery-induced weight loss and the immediate postoperative beneficial metabolic effects associated with the operation remain uncertain. Enteroendocrine cell (EEC) secretory function has been proposed as a key factor in the marked metabolic benefits from RYGB surgery. OBJECTIVE: To identify novel gut-derived peptides with therapeutic potential in obesity and/or diabetes by profiling EEC-specific molecular changes in obese patients following RYGB-induced weight loss. SUBJECTS AND METHODS: Genome-wide expression analysis was performed in isolated human small intestinal EECs obtained from 20 gut-biopsied obese subjects before and after RYGB. Targets of interest were profiled for preclinical and clinical metabolic effects. RESULTS: Roux-en-Y gastric bypass consistently increased expression levels of the inverse ghrelin receptor agonist, liver-expressed antimicrobial peptide 2 (LEAP2). A secreted endogenous LEAP2 fragment (LEAP238-47) demonstrated robust insulinotropic properties, stimulating insulin release in human pancreatic islets comparable to the gut hormone glucagon-like peptide-1. LEAP238-47 showed reciprocal effects on growth hormone secretagogue receptor (GHSR) activity, suggesting that the insulinotropic action of the peptide may be directly linked to attenuation of tonic GHSR activity. The fragment was infused in healthy human individuals (n = 10), but no glucoregulatory effect was observed in the chosen dose as compared to placebo. CONCLUSIONS: Small intestinal LEAP2 expression was upregulated after RYGB. The corresponding circulating LEAP238-47 fragment demonstrated strong insulinotropic action in vitro but failed to elicit glucoregulatory effects in healthy human subjects.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Sanguíneas/metabolismo , Derivación Gástrica/métodos , Tracto Gastrointestinal/metabolismo , Islotes Pancreáticos/metabolismo , Obesidad/cirugía , Fragmentos de Péptidos/metabolismo , Transcriptoma , Adolescente , Adulto , Péptidos Catiónicos Antimicrobianos/genética , Biomarcadores/análisis , Proteínas Sanguíneas/genética , Estudios de Casos y Controles , Estudios Cruzados , Método Doble Ciego , Células Enteroendocrinas/metabolismo , Células Enteroendocrinas/patología , Femenino , Estudios de Seguimiento , Humanos , Islotes Pancreáticos/patología , Masculino , Obesidad/patología , Fragmentos de Péptidos/genética , Pronóstico , Estudios Prospectivos , Adulto Joven
4.
Obesity (Silver Spring) ; 28(11): 2163-2174, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33150746

RESUMEN

OBJECTIVE: Changes in the secretion of gut-derived peptide hormones have been associated with the metabolic benefits of Roux-en-Y gastric bypass (RYGB) surgery. In this study, the effects of RYGB on anthropometrics, postprandial plasma hormone responses, and mRNA expression in small intestinal mucosa biopsy specimens before and after RYGB were evaluated. METHODS: In a cross-sectional study, 20 individuals with obesity undergoing RYGB underwent mixed meal tests and upper enteroscopy with retrieval of small intestinal mucosa biopsy specimens 3 months before and after surgery. Concentrations of circulating gut and pancreatic hormones during mixed meal tests as well as full mRNA sequencing of biopsy specimens were evaluated. RESULTS: RYGB-induced improvements of body weight and composition, insulin resistance, and circulating cholesterols were accompanied by significant changes in postprandial plasma responses of pancreatic and gut hormones. Global gene expression analysis of biopsy specimens identified 2,437 differentially expressed genes after RYGB, including changes in genes that encode prohormones and G protein-coupled receptors. CONCLUSIONS: RYGB affects the transcription of a wide range of genes, indicating that the observed beneficial metabolic effects of RYGB may rely on a changed expression of several genes in the gut. RYGB-induced changes in the expression of genes encoding signaling peptides and G protein-coupled receptors may disclose new gut-derived treatment targets against obesity and diabetes.


Asunto(s)
Derivación Gástrica/métodos , Microbioma Gastrointestinal/genética , Expresión Génica/genética , Adulto , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad
5.
Sci Rep ; 9(1): 16161, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31695063

RESUMEN

The central mechanisms underlying the marked beneficial metabolic effects of bariatric surgery are unclear. Here, we characterized global gene expression in the hypothalamic arcuate nucleus (Arc) in diet-induced obese (DIO) rats following Roux-en-Y gastric bypass (RYGB). 60 days post-RYGB, the Arc was isolated by laser-capture microdissection and global gene expression was assessed by RNA sequencing. RYGB lowered body weight and adiposity as compared to sham-operated DIO rats. Discrete transcriptome changes were observed in the Arc following RYGB, including differential expression of genes associated with inflammation and neuropeptide signaling. RYGB reduced gene expression of glial cell markers, including Gfap, Aif1 and Timp1, confirmed by a lower number of GFAP immunopositive astrocyte profiles in the Arc. Sham-operated weight-matched rats demonstrated a similar glial gene expression signature, suggesting that RYGB and dietary restriction have common effects on hypothalamic gliosis. Considering that RYGB surgery also led to increased orexigenic and decreased anorexigenic gene expression, this may signify increased hunger-associated signaling at the level of the Arc. Hence, induction of counterregulatory molecular mechanisms downstream from the Arc may play an important role in RYGB-induced weight loss.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Dieta Reductora , Derivación Gástrica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Gliosis/genética , Adiposidad , Animales , Astrocitos/metabolismo , Biomarcadores , Dieta Alta en Grasa , Ingestión de Alimentos , Proteína Ácida Fibrilar de la Glía/análisis , Péptido 1 Similar al Glucagón/sangre , Inflamación/genética , Captura por Microdisección con Láser , Masculino , Neuropéptidos/biosíntesis , Neuropéptidos/genética , Obesidad/etiología , Obesidad/cirugía , Péptido YY/sangre , Ratas , Ratas Sprague-Dawley , Análisis de Secuencia de ARN , Pérdida de Peso
6.
Peptides ; 118: 170100, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31212005

RESUMEN

OBJECTIVE: Roux-en-Y gastric bypass (RYGB) leads to rapid remission of type 2 diabetes (T2D) and sustained body weight loss, but the underlying molecular mechanisms are still not fully understood. To further elucidate these mechanisms and identify potentially novel preprohormone encoding genes with anti-diabetic and/or anti-obesity properties, we performed a comprehensive analysis of gene expression changes in enteroendocrine cells after RYGB in diet-induced obese (DIO) rats. METHODS: The mRNA expression profiles of enteroendocrine cell enriched samples were characterized at 9, 22 and 60 days after RYGB surgery in a DIO rat model. Enteroendocrine cells were identified by chromogranin A immunohistochemistry and isolated by laser capture microdissection (LCM) from five regions covering the full rostro-caudal extension of the gastrointestinal (GI) tract. RNA sequencing and bioinformatic analyses were subsequently applied to identify differentially expressed preprohormone encoding genes. RESULTS: From the analysis of enteroendocrine cell mRNA expression profiles, a total of 54 preprohormones encoding genes were found to be differentially regulated at one or more time-points following RYGB. These included well-known RYGB associated preprohormone genes (e.g. Gcg, Cck, Gip, Pyy and Sct) and less characterized genes with putative metabolic effects (e.g. Nmu, Guca2a, Guca2b, Npw and Adm), but also 16 predicted novel preprohormone genes. Among the list of gene transcripts, Npw, Apln and Fam3d were further validated using in situ mRNA hybridization and corresponding peptides were characterized for acute effects on food intake and glucose tolerance in mice. CONCLUSION: We present a comprehensive mRNA expression profile of chromogranin A positive enteroendocrine cells following RYGB in rats. The data provides a region-specific characterization of all regulated preprohormone encoding genes in the rat GI tract including 16 not hitherto known. The comprehensive catalogue of preprohormone expression changes may support our understanding of hormone mediated effects of RYGB on diabetes remission and body weight reduction.


Asunto(s)
Células Enteroendocrinas/metabolismo , Derivación Gástrica , Obesidad/genética , Obesidad/metabolismo , Hormonas Peptídicas/genética , Hormonas Peptídicas/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Animales , Colecistoquinina/genética , Colecistoquinina/metabolismo , Biología Computacional , Polipéptido Inhibidor Gástrico/genética , Polipéptido Inhibidor Gástrico/metabolismo , Inmunohistoquímica , Hibridación in Situ , Captura por Microdisección con Láser , Masculino , Ratones , Obesidad/cirugía , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Análisis de Secuencia de ARN , Somatostatina/genética , Somatostatina/metabolismo , Transcriptoma/genética
7.
J Clin Endocrinol Metab ; 104(12): 6403-6416, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31276156

RESUMEN

CONTEXT: After Roux-en-Y gastric bypass (RYGB) surgery, postprandial plasma glucagon concentrations have been reported to increase. This occurs despite concomitant improved glucose tolerance and increased circulating plasma concentrations of insulin and the glucagon-inhibiting hormone glucagon-like peptide 1 (GLP-1). OBJECTIVE: To investigate whether RYGB-induced hyperglucagonemia may be derived from the gut. DESIGN AND SETTING: Substudy of a prospective cross-sectional study at a university hospital in Copenhagen, Denmark. PARTICIPANTS: Morbidly obese individuals undergoing RYGB (n = 8) with or without type 2 diabetes. INTERVENTIONS: Three months before and after RYGB, participants underwent upper enteroscopy with retrieval of gastrointestinal mucosal biopsy specimens. Mixed-meal tests were performed 1 week and 3 months before and after RYGB. MAIN OUTCOME MEASURES: The 29-amino acid glucagon concentrations in plasma and in mucosal gastrointestinal biopsy specimens were assessed using mass spectrometry-validated immunoassays, and a new monoclonal antibody reacting with immunoreactive glucagon was used for immunohistochemistry. RESULTS: Postprandial plasma concentrations of glucagon after RYGB were increased. Expression of the glucagon gene in the small intestine increased after surgery. Glucagon was identified in the small-intestine biopsy specimens obtained after, but not before, RYGB. Immunohistochemically, mucosal biopsy specimens from the small intestine harbored cells costained for GLP-1 and immunoreactive glucagon. CONCLUSION: Increased concentrations of glucagon were observed in small-intestine biopsy specimens and postprandially in plasma after RYGB. The small intestine harbored cells immunohistochemically costaining for GLP-1 and glucagon-like immunoreactivity after RYGB. Glucagon derived from small-intestine enteroendocrine l cells may contribute to postprandial plasma concentrations of glucagon after RYGB.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Derivación Gástrica/métodos , Péptido 1 Similar al Glucagón/sangre , Glucagón/sangre , Insulina/sangre , Intestinos/fisiología , Obesidad Mórbida/sangre , Adolescente , Adulto , Enteroscopia de Balón , Biomarcadores/sangre , Glucemia/análisis , Estudios de Casos y Controles , Estudios Transversales , Femenino , Estudios de Seguimiento , Polipéptido Inhibidor Gástrico/sangre , Hemoglobina Glucada/análisis , Humanos , Masculino , Comidas , Persona de Mediana Edad , Obesidad Mórbida/complicaciones , Obesidad Mórbida/cirugía , Periodo Posprandial , Pronóstico , Estudios Prospectivos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA