Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 25(8): 4956-4964, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38985329

RESUMEN

Platelet-derived extracellular vesicles (PEVs) showing great potential in wound healing have attracted increasing attention recently. Nondestructive isolation and effective utilization strategies are highly conducive for PEVs developing into recognized therapeutic entities. Here, we present an efficient strategy for PEV isolation and bacterial infected wound healing based on self-assembled DNA microflowers. First, DNA microflowers are prepared using rolling circle amplification. Then, the hydrophobic interaction between cholesteryl modified on DNA microflowers and the phospholipid bilayer membrane of PEVs leads to the formation of a network structure with improved mechanical strength and the separation of PEVs from biological samples. Finally, controlled release of PEVs is achieved through bacterial-induced hydrogel degradation. In vitro experiments demonstrate the obtained DNA hydrogel with good cytocompatibility and therapeutic potential. Taken together, the DNA microflower-based hydrogels with bioadhesive, self-healing, tunable mechanical properties and bacteria-responsive behavior offer substantial potential for EV isolation and wound healing.


Asunto(s)
Plaquetas , ADN , Vesículas Extracelulares , Hidrogeles , Cicatrización de Heridas , Vesículas Extracelulares/química , Cicatrización de Heridas/efectos de los fármacos , ADN/química , Plaquetas/metabolismo , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Animales , Ratones
2.
J Cell Mol Med ; 24(8): 4377-4388, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32175696

RESUMEN

Extracellular vesicles (EVs) are nanosized, membranous vesicles released by almost all types of cells. Extracellular vesicles can be classified into distinct subtypes according to their sizes, origins and functions. Extracellular vesicles play important roles in intercellular communication through the transfer of a wide spectrum of bioactive molecules, contributing to the regulation of diverse physiological and pathological processes. Recently, it has been established that EVs mediate foetal-maternal communication across gestation. Abnormal changes in EVs have been reported to be critically involved in pregnancy-related diseases. Moreover, EVs have shown great potential to serve as biomarkers for the diagnosis of pregnancy-related diseases. In this review, we discussed about the roles of EVs in normal pregnancy and how changes in EVs led to complicated pregnancy with an emphasis on their values in predicting and monitoring of pregnancy-related diseases.


Asunto(s)
Exosomas/genética , Vesículas Extracelulares/genética , Complicaciones del Embarazo/genética , Biomarcadores/metabolismo , Comunicación Celular/genética , Femenino , Humanos , Embarazo , Complicaciones del Embarazo/patología
3.
Clin Chim Acta ; 564: 119927, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153656

RESUMEN

BACKGROUND: Helicobacter pylori (H. pylori) infects over 50% of the global population and is a significant risk factor for gastric cancer. The pathogenicity of H. pylori is primarily attributed to virulence factors such as vacA. Timely and accurate identification, along with genotyping of H. pylori virulence genes, are essential for effective clinical management and controlling its prevalence. METHODS: In this study, we developed a dual-target RAA-LFD assay for the rapid, visual detection of H. pylori genes (16s rRNA, ureA, vacA m1/m2), using recombinase aided amplification (RAA) combined with lateral flow dipstick (LFD) methods. Both 16s rRNA and ureA were selected as identification genes to ensure reliable detection accuracy. RESULTS: A RAA-LFD assay was developed to achieve dual-target amplification at a stable 37 °C within 20 min, followed by visualization using the lateral flow dipstick (LFD). The whole process, from amplification to results, took less than 30 min. The 95 % limit of detection (LOD) for 16 s rRNA and ureA, vacA m1, vacA m2 were determined as 3.8 × 10-2 ng/µL, 5.8 × 10-2 ng/µL and 1.4 × 10-2 ng/µL, respectively. No cross-reaction was observed in the detection of common pathogens including Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis, showing the assay's high specificity. In the evaluation of the clinical performance of the RAA-LFD assay. A total of 44 gastric juice samples were analyzed, immunofluorescence staining (IFS) and quantitative polymerase chain reaction (qPCR) were used as reference methods. The RAA-LFD results for the 16s rRNA and ureA genes showed complete agreement with qPCR findings, accurately identifying H. pylori infection as confirmed by IFS in 10 out of the 44 patients. Furthermore, the assay successfully genotyped vacA m1/m2 among the positive samples, showing complete agreement with qPCR results and achieving a kappa (κ) value of 1.00. CONCLUSION: The dual-target RAA-LFD assay developed in this study provides a rapid and reliable method for detecting and genotyping H. pylori within 30 min, minimizing dependency on sophisticated laboratory equipment and specialized personnel. Clinical validation confirms its efficacy as a promising tool for effectively control of its prevalence and aiding in the precise treatment of H. pylori-associated diseases.

4.
Front Bioeng Biotechnol ; 11: 1169424, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37207121

RESUMEN

Transfer RNA-derived small RNAs (tsRNAs) tRF-LeuCAG-002 (ts3011a RNA) is a novel class of non-coding RNAs biomarker for pancreatic cancer (PC). Reverse transcription polymerase chain reaction (RT-qPCR) has been unfit for community hospitals that are short of specialized equipment or laboratory setups. It has not been reported whether isothermal technology can be used for detection, because the tsRNAs have rich modifications and secondary structures compared with other non-coding RNAs. Herein, we have employed a catalytic hairpin assembly (CHA) circuit and clustered regularly interspaced short palindromic repeats (CRISPR) to develop an isothermal and target-initiated amplification method for detecting ts3011a RNA. In the proposed assay, the presence of target tsRNA triggers the CHA circuit that transforms new DNA duplexes to activate collateral cleavage activity of CRISPR-associated proteins (CRISPR-Cas) 12a, achieving cascade signal amplification. This method showed a low detection limit of 88 aM at 37 °C within 2 h. Moreover, it was demonstrated for the first time that, this method is less likely to produce aerosol contamination than RT-qPCR by simulating aerosol leakage experiments. This method has good consistency with RT-qPCR in the detection of serum samples and showed great potential for PC-specific tsRNAs point-of-care testing (POCT).

5.
Front Bioeng Biotechnol ; 10: 948757, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032725

RESUMEN

MicroRNA (miRNA) in extracellular vesicles (EVs) has great potential to be a promising marker in liquid biopsy. However, the present EV isolation methods, such as ultracentrifugation, have complicated and long-time operation, which impedes research on EV miRNA. The downstream complex miRNA extraction process will also significantly increase the detection cycle and loss. We first established a simple automated technique to efficiently extract target miRNAs in EVs from plasma based on Fe3O4@TiO2 beads with high affinity and capture efficiency. We combined a heat-lysis method for quick and simple EV miRNA extraction and detection. The results indicated that our method has more RNA yield than TRIzol or a commercial kit and could complete EV enrichment and miRNA extraction in 30 min. Through the detection of miRNA-21, healthy people and lung cancer patients were distinguished, which verified the possibility of the application in clinical detection. The automated isolation technology for EV miRNA has good repeatability and high throughput, with great application potential in clinical diagnosis.

6.
J Biomed Nanotechnol ; 18(3): 640-659, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35715917

RESUMEN

Central nervous system (CNS) diseases are difficult to treat and harmful. Many CNS diseases are secondary to peripheral diseases, such as tumor brain metastases (BMS), viral infections and inflammation of the brain, and their pathogenic factors travel through the circulatory system to the brain, eventually leading to lesions. Extracellular vesicles (EVs) play an important role in this process. Recent studies have shown that, extracellular EVs can effectively cross the blood- brain barrier (BBB) through endocytosis and they transmit molecular signals in cell-to-cell communication. Abnormal EVs produced in the lesion portion transport pathogenic factors, including miRNAs, proteins, and virions into the CNS. These pathogenic factors participate in cellular pathways to interfere with homeostasis or are themselves pathogens that directly damage CNS. In addition, different or specific pathological molecules in EVs are potential disease markers. We herein reviewed pathways through which the abnormal EVs cross BBB and adverse effects of abnormal exosomes. We also and summarized their existing detection techniques, so as to provide basis for prevention and early diagnosis of secondary diseases.


Asunto(s)
Exosomas , Vesículas Extracelulares , Barrera Hematoencefálica/metabolismo , Encéfalo , Sistema Nervioso Central , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo
7.
Front Bioeng Biotechnol ; 10: 948959, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36324901

RESUMEN

MicroRNAs (miRNAs) are a class of short, single-stranded, noncoding RNAs, with a length of about 18-22 nucleotides. Extracellular vesicles (EVs) are derived from cells and play a vital role in the development of diseases and can be used as biomarkers for liquid biopsy, as they are the carriers of miRNA. Existing studies have found that most of the functions of miRNA are mainly realized through intercellular transmission of EVs, which can protect and sort miRNAs. Meanwhile, detection sensitivity and specificity of EV-derived miRNA are higher than those of conventional serum biomarkers. In recent years, EVs have been expected to become a new marker for liquid biopsy. This review summarizes recent progress in several aspects of EVs, including sorting mechanisms, diagnostic value, and technology for isolation of EVs and detection of EV-derived miRNAs. In addition, the study reviews challenges and future research avenues in the field of EVs, providing a basis for the application of EV-derived miRNAs as a disease marker to be used in clinical diagnosis and even for the development of point-of-care testing (POCT) platforms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA