Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Phytopathology ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38749069

RESUMEN

The previous studies revealed that the type VI secretion system (T6SS) has an essential role in bacterial competition and virulence in many gram-negative bacteria. However, the role of T6SS in virulence in Pectobacterium atrosepticum remains controversial. We examined a closely related strain, PccS1, and discovered that its T6SS comprises a single copy cluster of 17 core genes with a higher identity to homologs from P. atrosepticum. Through extensive phenotypic and functional analyses of over 220 derivatives of PccS1, we found that three of the five VgrGs could be classified into group I VgrGs. These VgrGs interacted with corresponding DUF4123 domain proteins, which were secreted outside of the membrane and were dependent on either T6SS or T4SS. This interaction directly governed virulence and competition. Meanwhile, supernatant proteomic analyses with stains defective in T6SS or/and T4SS confirm that effectors, such as FhaB, were secreted redundantly to control the virulence and suppress host callose-deposition in the course of infection. Notably, this redundant secretion mechanism between T6SS and T4SS is believed to be the first of its kind in bacteria.

2.
Appl Environ Microbiol ; 89(1): e0123622, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36602342

RESUMEN

The ß-1,6-glucan is the key linker between mannoproteins in the outermost part of the cell wall and ß-1,3-glucan/chitin polysaccharide to maintain the rigid structure of the cell wall. The ß-1,6-glucanase GluM, which was purified from the fermentation supernatant of Corallococcus sp. EGB, was able to inhibit the germination of Fusarium oxysporum f. sp. cucumerinum conidia at a minimum concentration of 2.0 U/mL (0.08 µg/mL). The survival rates of GluM-treated conidia and monohyphae were 10.4% and 30.7%, respectively, which were significantly lower than that of ß-1,3-glucanase treatment (Zymolyase, 20.0 U/mL; equate to 1.0 mg/mL) (72.9% and 73.9%). In contrast to ß-1,3-glucanase treatment, the high-osmolarity glycerol (HOG) pathway of F. oxysporum f. sp. cucumerinum cells was activated after GluM treatment, and the intracellular glycerol content was increased by 2.6-fold. Moreover, the accumulation of reactive oxygen species (ROS) in F. oxysporum f. sp. cucumerinum cells after GluM treatment induced apoptosis, but it was not associated with the increased intracellular glycerol content. Together, the results indicate that ß-1,6-glucan is a promising target for the development of novel broad-spectrum antifungal agents. IMPORTANCE Phytopathogenic fungi are the most devastating plant pathogens in agriculture, causing enormous economic losses to global crop production. Biocontrol agents have been promoted as replacements to synthetic chemical pesticides for sustainable agriculture development. Cell wall-degrading enzymes (CWDEs), including chitinases and ß-1,3-glucanases, have been considered as important armaments to damage the cell wall. Here, we found that F. oxysporum f. sp. cucumerinum is more sensitive to ß-1,6-glucanase GluM treatment (0.08 µg/mL) than ß-1,3-glucanase Zymolyase (1.0 mg/mL). The HOG pathway was activated in F. oxysporum f. sp. cucumerinum cells after GluM treatment, and the intracellular glycerol content was significantly increased. Moreover, the decomposition of F. oxysporum f. sp. cucumerinum cell wall by GluM induced the burst of intracellular ROS and apoptosis, which eventually leads to cell death. Therefore, we suggest that the ß-1,6-glucan of the fungal cell wall may be a better antifungal target compared to the ß-1,3-glucan.


Asunto(s)
Fusarium , Glicerol , Especies Reactivas de Oxígeno/metabolismo , Glicerol/metabolismo , Pared Celular , Antifúngicos/farmacología , Esporas Fúngicas , Muerte Celular , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
3.
Molecules ; 27(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36014529

RESUMEN

The abuse of agricultural antibiotics has led to the emergence of drug-resistant phytopathogens. Rifampicin and streptomycin and streptomycin resistance Pectobacterium carotovorum subsp. carotovorum (PccS1) was obtained from pathological plants in a previous experiment. Rheum tanguticum, derived from the Chinese plateau area, exhibits excellent antibacterial activity against PccS1, yet the action mode has not been fully understood. In present text, the cell wall integrity of the PccS1 was tested by the variation of the cellular proteins, SDS polyacrylamide gel electrophoresis (SDS-PAGE), scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometer (FTIR) characteristics. Label-free quantitative proteomics was further used to identify the DEPs in the pathogen response to treatment with Rheum tanguticum Maxim. ex Balf. extract (abbreviated as RTMBE). Based on the bioinformatics analysis of these different expressed proteins (DEPs), RTMBE mainly inhibited some key protein expressions of beta-Lactam resistance, a two-component system and phosphotransferase system. Most of these membrane proteins were extraordinarily suppressed, which was also consistent with the morphological tests. In addition, from the downregulated flagellar motility related proteins, it was also speculated that RTMBE played an essential antibacterial role by affecting the swimming motility of the cells. The results indicated that Rheum tanguticum can be used to attenuate the virulence of the drug-resistant phytopathogenic bacteria.


Asunto(s)
Pectobacterium carotovorum , Rheum , Antibacterianos/metabolismo , Antibacterianos/farmacología , Pared Celular/metabolismo , Pectobacterium , Pectobacterium carotovorum/fisiología , Estreptomicina
4.
Environ Microbiol ; 23(8): 4673-4688, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34227200

RESUMEN

Soil microbiome comprises numerous microbial species that continuously interact with each other. Among the modes of diverse interactions, cell-cell killing may play a key role in shaping the microbiome composition. Bacteria deploy various secretion systems to fend off other microorganisms and Type IV Secretion System (T4SS) in pathogenic bacteria was shown to function as a contact-dependent, inter-bacterial killing system only recently. The present study investigated the role played by T4SS in the killing behaviour of the soilborne biocontrol bacterium Lysobacter enzymogenes OH11. Results showed that L. enzymogenes OH11 genome encompasses genes encoding all the components of T4SS and effectors potentially involved in inter-bacterial killing system. Generation of knock-out mutants revealed that L. enzymogenes OH11 uses T4SS as the main contact-dependent weapon against other soilborne bacteria. The T4SS-mediated killing behaviour of L. enzymogenes OH11 decreased the antibacterial and antifungal activity of two Pseudomonas spp. but at the same time, protected carrot from infection by Pectobacterium carotovorum. Overall, this study showed for the first time the involvement of T4SS in the killing behaviour of L. enzymogenes and its impact on the multiple interactions occurring in the soil microbiome.


Asunto(s)
Lysobacter , Sistemas de Secreción Tipo IV , Antifúngicos , Lysobacter/genética
5.
Mol Plant Microbe Interact ; 31(11): 1166-1178, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30198820

RESUMEN

Hfq is a RNA chaperone and participates in a wide range of cellular processes and pathways. In this study, mutation of hfq gene from Pectobacterium carotovorum subsp. carotovorum PccS1 led to significantly reduced virulence and plant cell wall-degrading enzyme (PCWDE) activities. In addition, the mutant exhibited decreased biofilm formation and motility and greatly attenuated carbapenem production as well as secretion of hemolysin coregulated protein (Hcp) as compared with wild-type strain PccS1. Moreover, a higher level of callose deposition was induced in Nicotiana benthamiana leaves when infiltrated with the mutant. A total of 26 small (s)RNA deletion mutants were obtained among a predicted 27 sRNAs, and three mutants exhibited reduced virulence in the host plant. These results suggest that hfq plays a key role in Pectobacterium virulence by positively impacting PCWDE production, secretion of the type VI secretion system, bacterial competition, and suppression of host plant responses.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Calla (Planta)/microbiología , Proteína de Factor 1 del Huésped/metabolismo , Pectobacterium carotovorum/enzimología , Enfermedades de las Plantas/microbiología , Sistemas de Secreción Tipo VI/metabolismo , Secuencia de Aminoácidos , Calla (Planta)/inmunología , Pared Celular/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucanos/metabolismo , Proteína de Factor 1 del Huésped/genética , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/patogenicidad , Pectobacterium carotovorum/fisiología , Enfermedades de las Plantas/inmunología , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Alineación de Secuencia , Sistemas de Secreción Tipo VI/genética , Virulencia
6.
Phytopathology ; 107(11): 1322-1330, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28853642

RESUMEN

Pectobacterium carotovorum subsp. carotovorum strain PccS1, a bacterial pathogen causing soft rot disease of Zantedeschia elliotiana (colored calla), was investigated for virulence genes induced by the host plant. Using a promoter-trap transposon (mariner), we obtained 500 transposon mutants showing kanamycin resistance dependent on extract of Z. elliotiana. One of these mutants, PM86, exhibited attenuated virulence on both Z. elliotiana and Brassica rapa subsp. pekinensis. The growth of PM86 was also reduced in minimal medium (MM), and the reduction was restored by adding plant extract to the MM. The gene containing the insertion site was identified as rplY. The deletion mutant ΔrplY, exhibited reduced virulence, motility and plant cell wall-degrading enzyme production but not biofilm formation. Analysis of gene expression and reporter fusions revealed that the rplY gene in PccS1 is up-regulated at both the transcriptional and the translational levels in the presence of plant extract. Our results suggest that rplY is induced by Z. elliotiana extract and is crucial for virulence in P. carotovorum subsp. carotovorum.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pectobacterium carotovorum/patogenicidad , Extractos Vegetales/farmacología , Zantedeschia/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Extractos Vegetales/química , Virulencia
7.
Int J Syst Evol Microbiol ; 66(8): 2831-2835, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27045848

RESUMEN

Gram-stain-negative, pectinolytic bacteria were repeatedly isolated from pear trees displaying symptoms of bleeding canker in China. Three strains, JS5T, LN1 and QZH3, had identical 16S rRNA gene sequences that shared 99 % similarity to the type strain of Dickeya dadantii. Phylogenetic analysis of strains JS5T, LN1 and QZH3 with isolates representing all species of the genus Dickeya and related Pectobacterium species supported their affiliation to Dickeya. Multi-locus sequence typing employing concatenated sequences encoding recA, fusA, gapA, purA, rplB, dnaX and the intergenic spacer illustrated a phylogeny which placed strains JS5T, LN1 and QZH3 as a distinct clade, separate from all other species of the genus Dickeya. Average nucleotide identity values obtained in comparison with all species of the genus Dickeya supported the distinctiveness of strain JS5T within the genus Dickeya. Additionally, all three strains were phenotypically distinguished from other species of the genus Dickeya by failing to hydrolyse casein, and by producing acids from (-)-d-arabinose, (+)melibiose, (+)raffinose, mannitol and myo-inositol, but not from 5-keto-d-gluconate or ß-gentiobiose. The name Dickeya fangzhongdai sp. nov. is proposed to accommodate these strains; the type strain is JS5T (=CGMCC 1.15464T=DSM 101947T).


Asunto(s)
Enterobacteriaceae/clasificación , Filogenia , Enfermedades de las Plantas/microbiología , Pyrus/microbiología , Técnicas de Tipificación Bacteriana , China , ADN Bacteriano/genética , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Ácidos Grasos/química , Genes Bacterianos , Tipificación de Secuencias Multilocus , Fenotipo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
8.
Genomics ; 104(4): 306-12, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25128725

RESUMEN

Thrips is an ideal group for studying the evolution of mitochondrial (mt) genomes in the genus and family due to independent rearrangements within this order. The complete sequence of the mitochondrial DNA (mtDNA) of the flower thrips Frankliniella intonsa has been completed and annotated in this study. The circular genome is 15,215bp in length with an A+T content of 75.9% and contains the typical 37 genes and it has triplicate putative control regions. Nucleotide composition is A+T biased, and the majority of the protein-coding genes present opposite CG skew which is reflected by the nucleotide composition, codon and amino acid usage. Although the known thrips have massive gene rearrangements, it showed no reversal of strand asymmetry. Gene rearrangements have been found in the lower taxonomic levels of thrips. Three tRNA genes were translocated in the genus Frankliniella and eight tRNA genes in the family Thripidae. Although the gene arrangements of mt genomes of all three thrips species differ massively from the ancestral insect, they are all very similar to each other, indicating that there was a large rearrangement somewhere before the most recent common ancestor of these three species and very little genomic evolution or rearrangements after then. The extremely similar sequences among the CRs suggest that they are ongoing concerted evolution. Analyses of the up and downstream sequence of CRs reveal that the CR2 is actually the ancestral CR. The three CRs are in the same spot in each of the three thrips mt genomes which have the identical inverted genes. These characteristics might be obtained from the most recent common ancestor of this three thrips. Above observations suggest that the mt genomes of the three thrips keep a single massive rearrangement from the common ancestor and have low evolutionary rates among them.


Asunto(s)
Evolución Molecular , Genoma de los Insectos , Genoma Mitocondrial , Thysanoptera/genética , Animales , Secuencia de Bases , Secuencia Rica en GC , Reordenamiento Génico , Región de Control de Posición , Datos de Secuencia Molecular , ARN de Transferencia/genética , Thysanoptera/clasificación
9.
J Econ Entomol ; 108(4): 2000-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26470346

RESUMEN

The western flower thrips is an economically important worldwide pest of many crops, and chlorpyrifos has been used to control western flower thrips for many years. To develop a better resistance-management strategy, a chlorpyrifos-resistant strain of western flower thrips (WFT-chl) was selected in the laboratory. More than 39-fold resistance was achieved after selected by chlorpyrifos for 19 generations in comparison with the susceptible strain (WFT-S). Proteome of western flower thrips (WFT-S and WFT-chl) was investigated using a quantitative proteomics approach with isobaric tag for relative and absolute quantification technique and liquid chromatography-tandem mass spectrometry technologies. According to the functional analysis, 773 proteins identified were grouped into 10 categories of molecular functions and 706 proteins were presented in 213 kinds of pathways. Comparing the proteome of WFT-chl with that of WFT-S, a total of eight proteins were found up-regulated and three down-regulated. The results from functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses indicated that the differentially expressed protein functions in binding, catalyzing, transporting, and enzyme regulation were most important in resistance development. A list of proteins functioning in biological processes of metabolism, biological regulation, and response to stimulus was found in WFT-chl, suggesting that they are possibly the major components of the resistance mechanism to chlorpyrifos in western flower thrips. Notably, several novel potential resistance-related proteins were identified such as ribosomal protein, Vg (vitellogenin), and MACT (muscle actin), which can be used to improve our understanding of the resistance mechanisms in western flower thrips. This study provided the first comprehensive view of the complicated resistance mechanism employed by WFT-S and WFT-chl through the isobaric tag for relative and absolute quantification coupled with liquid chromatography-tandem mass spectrometry technologies.


Asunto(s)
Cloropirifos/farmacología , Proteínas de Insectos/genética , Resistencia a los Insecticidas , Insecticidas/farmacología , Proteoma , Thysanoptera/efectos de los fármacos , Animales , Proteínas de Insectos/metabolismo , Datos de Secuencia Molecular , Ninfa/efectos de los fármacos , Ninfa/genética , Ninfa/crecimiento & desarrollo , Ninfa/metabolismo , Thysanoptera/genética , Thysanoptera/crecimiento & desarrollo , Thysanoptera/metabolismo
10.
J Proteome Res ; 12(7): 3327-41, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23688240

RESUMEN

Quorum sensing (QS) in Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of bacterial leaf streak, is mediated by the diffusible signal factor (DSF). DSF-mediating QS has been shown to control virulence and a set of virulence-related functions; however, the expression profiles and functions of extracellular proteins controlled by DSF signal remain largely unclear. In the present study, 33 DSF-regulated extracellular proteins, whose functions include small-protein mediating QS, oxidative adaptation, macromolecule metabolism, cell structure, biosynthesis of small molecules, intermediary metabolism, cellular process, protein catabolism, and hypothetical function, were identified by proteomics in Xoc. Of these, 15 protein encoding genes were in-frame deleted, and 4 of them, including three genes encoding type II secretion system (T2SS)-dependent proteins and one gene encoding an Ax21 (activator of XA21-mediated immunity)-like protein (a novel small-protein type QS signal) were determined to be required for full virulence in Xoc. The contributions of these four genes to important virulence-associated functions, including bacterial colonization, extracellular polysaccharide, cell motility, biofilm formation, and antioxidative ability, are presented. To our knowledge, our analysis is the first complete list of DSF-regulated extracellular proteins and functions in a Xanthomonas species. Our results show that DSF-type QS played critical roles in regulation of T2SS and Ax21-mediating QS, which sheds light on the role of DSF signaling in Xanthomonas.


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Proteómica/métodos , Percepción de Quorum/genética , Xanthomonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Transducción de Señal , Virulencia/genética , Xanthomonas/patogenicidad
11.
Appl Environ Microbiol ; 79(21): 6604-16, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23974132

RESUMEN

Lysobacter enzymogenes is a ubiquitous environmental bacterium that is emerging as a potentially novel biological control agent and a new source of bioactive secondary metabolites, such as the heat-stable antifungal factor (HSAF) and photoprotective polyene pigments. Thus far, the regulatory mechanism(s) for biosynthesis of these bioactive secondary metabolites remains largely unknown in L. enzymogenes. In the present study, the diffusible signal factor (DSF) and diffusible factor (DF)-mediated cell-cell signaling systems were identified for the first time from L. enzymogenes. The results show that both Rpf/DSF and DF signaling systems played critical roles in modulating HSAF biosynthesis in L. enzymogenes. Rpf/DSF signaling and DF signaling played negative and positive effects in polyene pigment production, respectively, with DF playing a more important role in regulating this phenotype. Interestingly, only Rpf/DSF, but not the DF signaling system, regulated colony morphology of L. enzymgenes. Both Rpf/DSF and DF signaling systems were involved in the modulation of expression of genes with diverse functions in L. enzymogenes, and their own regulons exhibited only a few loci that were regulated by both systems. These findings unveil for the first time new roles of the Rpf/DSF and DF signaling systems in secondary metabolite biosynthesis of L. enzymogenes.


Asunto(s)
Toxinas Bacterianas/biosíntesis , Regulación Bacteriana de la Expresión Génica/fisiología , Lysobacter/fisiología , Interacciones Microbianas/fisiología , Pigmentos Biológicos/biosíntesis , Metabolismo Secundario/fisiología , Escherichia coli , Lysobacter/genética , Análisis por Micromatrices , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Metabolismo Secundario/genética , Xanthomonas
12.
Microbiol Spectr ; : e0176423, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37712699

RESUMEN

Pectobacterium spp. are important bacterial pathogens that cause soft rot symptoms in various crops. However, their mechanism of pathogenicity requires clarity to help control their infections. Here, genome-wide association studies (GWAS) were conducted by integrating genomic data and measurements of two phenotypes (virulence and cellulase activity) for 120 various Pectobacterium strains in order to identify the genetic basis of their pathogenicity. An artificial intelligence-based software program was developed to automatically measure lesion areas on Chinese cabbage, thereby facilitating accurate and rapid data collection for virulence phenotypes for use in GWAS analysis. The analysis discovered 428 and 158 loci significantly associated with Pectobacterium virulence (lesion area) and cellulase activity, respectively. In addition, 1,229 and 586 epistasis loci pairs were identified for the virulence and cellulase activity phenotypes, respectively. Among them, the AraC transcriptional regulator exerted epistasis effects with another three nutrient transport-related genes in pairs contributing to the virulence phenotype, and their epistatic effects were experimentally confirmed for one pair with knockout mutants of each single gene and double gene. This study consequently provides valuable insights into the genetic mechanism underlying Pectobacterium spp. pathogenicity. IMPORTANCE Plant diseases and pests are responsible for the loss of up to 40% of food crops, and annual economic losses caused by plant diseases reach more than $220 billion. Fighting against plant diseases requires an understanding of the pathogenic mechanisms of pathogens. This study adopted an advanced approach using population genomics integrated with virulence-related phenotype data to investigate the genetic basis of Pectobacterium spp., which causes serious crop losses worldwide. An automated software program based on artificial intelligence was developed to measure the virulence phenotype (lesion area), which greatly facilitated this research. The analysis predicted key genomic loci that were highly associated with virulence phenotypes, exhibited epistasis effects, and were further confirmed as critical for virulence with mutant gene deletion experiments. The present study provides new insights into the genetic determinants associated with Pectobacterium pathogenicity and provides a valuable new software resource that can be adapted to improve plant infection measurements.

13.
ISME J ; 17(7): 1089-1103, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37156836

RESUMEN

As social micropredators, myxobacteria are studied for their abilities to prey on bacteria and fungi. However, their predation of oomycetes has received little attention. Here, we show that Archangium sp. AC19 secretes a carbohydrate-active enzyme (CAZyme) cocktail during predation on oomycetes Phytophthora. These enzymes include three specialized ß-1,3-glucanases (AcGlu13.1, -13.2 and -13.3) that act as a cooperative consortium to target ß-1,3-glucans of Phytophthora. However, the CAZymes showed no hydrolytic effects on fungal cells, even though fungi contain ß-1,3-glucans. Heterologous expression of AcGlu13.1, -13.2 or -13.3 enzymes in Myxococcus xanthus DK1622, a model myxobacterium that antagonizes but does not predate on P. sojae, conferred a cooperative and mycophagous ability that stably maintains myxobacteria populations as a mixture of engineered strains. Comparative genomic analyses suggest that these CAZymes arose from adaptive evolution among Cystobacteriaceae myxobacteria for a specific prey killing behavior, whereby the presence of Phytophthora promotes growth of myxobacterial taxa by nutrient release and consumption. Our findings demonstrate that this lethal combination of CAZymes transforms a non-predatory myxobacterium into a predator with the ability to feed on Phytophthora, and provides new insights for understanding predator-prey interactions. In summary, our work extends the repertoire of myxobacteria predatory strategies and their evolution, and suggests that these CAZymes can be engineered as a functional consortium into strains for biocontrol of Phytophothora diseases and hence crop protection.


Asunto(s)
Myxococcales , Myxococcus xanthus , Phytophthora , Animales , Myxococcales/genética , Conducta Predatoria , Myxococcus xanthus/genética , Glucanos , Phytophthora/genética
14.
Phytopathology ; 102(3): 252-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22106829

RESUMEN

Virulence factors of Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak in rice, are regulated by a diffusible signal factor (DSF)-dependent quorum-sensing (QS) system. In this study, a novel pathogenicity-related gene, Xoryp_010100018570 (named hshB), of X. oryzae pv. oryzicola was characterized. hshB encodes a hydrolase with a putative signal peptide, which is a homolog of imidazolonepropionase. Bioinformatic analysis showed that hshB is relatively conserved in the genus Xanthomonas but the homologous gene of hshB was not found in X. oryzae pv. oryzae. Reverse-transcription polymerase chain reaction (PCR) analysis showed that hshB and its upstream gene, Xoryp_010100018565 (named hshA), are co-transcribed in X. oryzae pv. oryzicola. Subsequent experimental results indicated that mutation of hshB remarkably impaired the virulence, extracellular protease activity, extracellular polysaccharide production, growth in minimal medium, and resistance to oxidative stress and bismerthiazol of X. oryzae pv. oryzicola. Mutation of clp, encoding a global regulator, resulted in similar phenotypes. Real-time PCR assays showed that hshB transcription is positively regulated by clp and DSF, and induced by poor nutrition. Our study not only found a novel gene hshB regulated by DSF-dependent QS system and clp but also showed that hshB was required for virulence of X. oryzae pv. oryzicola.


Asunto(s)
Proteínas Bacterianas/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Percepción de Quorum , Xanthomonas/genética , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Peróxido de Hidrógeno/farmacología , Mutación , Oxidantes/farmacología , Fenotipo , Hojas de la Planta/microbiología , Tiadiazoles/farmacología , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Xanthomonas/efectos de los fármacos , Xanthomonas/patogenicidad , Xanthomonas/fisiología
15.
Phytopathology ; 102(9): 841-7, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22881870

RESUMEN

Xanthomonas oryzae pv. oryzicola causes bacterial leaf streak in rice, a destructive disease worldwide. In this study, six putative hypothetical secreted proteins, which were absent in X. oryzae pv. oryzae, were detected from X. oryzae pv. oryzicola strain BLS256. Disruption-based mutagenesis study revealed that one of them, Xoc_15235, named as extracellular polysaccharide and virulence-related gene (epv), was required for the optimal virulence in host rice but not for the induction of a hypersensitive reaction in nonhost tobacco. Sequence analysis revealed that epv was highly conserved in Xanthomonas spp. (except X. oryzae pv. oryzae). In-frame deletion of epv in X. oryzae pv. oryzicola dramatically impaired pathogen virulence and extracellular polysaccharide (EPS) production, one of the important known virulence-associated functions in Xanthomonas spp. Quantitative real-time reverse-transcription polymerase chain reaction showed that expression of both gumB (a gene encoding exopolysaccharide xanthan biosynthesis export protein) and a known virulence-related gene, pgk (encoding phosphoglycerate kinase), were obviously reduced in the epv-deletion mutant compared with the wild-type strain Rs105. In addition, we observed that epv was positively regulated by both diffusible signal factor and global regulator Clp in X. oryzae pv. oryzicola. Taken together, the novel roles and genetics of epv of X. oryzae pv. oryzicola in the EPS production and virulence were investigated for the first time.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Percepción de Quorum/fisiología , Xanthomonas/metabolismo , Xanthomonas/patogenicidad , Proteínas Bacterianas/genética , Mutación , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Nicotiana , Transcripción Genética , Virulencia , Xanthomonas/genética
16.
World J Microbiol Biotechnol ; 28(2): 549-57, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22806850

RESUMEN

Here, three different suicide vectors were evaluated for the possibility of performing gene mutagenesis in strain OH11 using the chiA gene (accession number: DQ888611) as a new reporter. Suicide vector pEX18GM was selected, and it was successfully applied for disruption and in-frame deletions in the chiA gene in strain OH11, which was confirmed by PCR amplification and Southern hybridization. The chiA-deletion mutant OH11-3 did not have the ability to produce chitinase on chitine selection medium. Interestingly, the chiA-deletion mutants displayed wild-type antimicrobial activity against Saccharomyces cerevisiae, Magnaporthe grisea, Phytophthora capsici, Rhizoctonia solani, Sclerotinia sclerotiorum and Pythium ultimum. Our data suggest that chitinase might not be a unique lytic enzyme in controlling S. cerevisiae, M. grisea, P. capsici, and P. ultimum. R. solani, S. sclerotiorum. Also, suicide vector pEX18GM might be explored as a potential tool for gene deletions in L. enzymogenes, which will facilitate the molecular study of mechanisms of biological control in L. enzymogenes.


Asunto(s)
Proteínas Bacterianas/genética , Vectores Genéticos/genética , Lysobacter/genética , Mutagénesis/fisiología , Southern Blotting , Variaciones en el Número de Copia de ADN , Mutagénesis/genética
17.
Wei Sheng Wu Xue Bao ; 52(6): 703-9, 2012 Jun 04.
Artículo en Zh | MEDLINE | ID: mdl-22934350

RESUMEN

OBJECTIVE: To investigate functions of flgKpcc gene in Pectobacterium carotovorum subsp. carotovorum (P. c. c). METHODS: The gene knock-out mutant deltaflgKpcc and complemented strain deltaflgKpcc-KH were generated by biparental mating and their phenotypes including cell morphology, motility, pathogenic factors, and pathogenicity were investigated. RESULTS: Non-flagellum, cell precipitation in the culture and significantly attenuated motility on 0.3% semisolid medium were observed in deltaflgKpcc compared to Pectobacterium carotovorum subsp. carotovorum S1. In addition, significant decrease in cellulase and protease activity, biofilm formation, and pathogenicity on host plant were found in deltaflgKpcc. While there were no apparent difference in growth rate in vitro, deltaflgKpcc-KH, the complementation strain, restored the phenotype of deltaflgKpcc to the wild type level. CONCLUSION: The gen of flgKpcc not only influences the cell motility, but also pathogenic factors to lead to the decreased pathogenicity in Pectobacterium carotovorum subsp. Carotovorum.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/patogenicidad , Factores de Virulencia/metabolismo , Celulasa/metabolismo , Flagelos/metabolismo , Técnicas de Silenciamiento del Gen , Pectobacterium carotovorum/metabolismo , Péptido Hidrolasas/metabolismo
18.
Front Microbiol ; 13: 977281, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204623

RESUMEN

In many bacteria, OxyR acts as a transcriptional regulator that facilitates infection via degrading hydrogen peroxide (H2O2) generated by the host defense response. Previous studies showed that OxyR also plays an important role in regulating biofilm formation, cell motility, pili relate-genes expression, and surface polysaccharide production. However, the role of OxyR has not been determined in Acidovorax citrulli strain xjl12. In the current study, the qRT-PCR and western blot assays revealed that the expression level of oxyR was significantly induced by H2O2. The oxyR deletion mutant of A. citrulli was significantly impaired bacterial tolerance to oxidative stress and reduced catalase (CAT) activity. In addition, oxyR mutant resulted in reduced swimming motility, twitching motility, biofilm formation, virulence, and bacterial growth in planta by significantly affecting flagellin and type IV pili-related gene (fliC and pilA) expression. The qRT-PCR assays and western blot revealed that OxyR positively regulated the expression of fliC and pilA. Furthermore, bacterial one-hybrid assay demonstrated that OxyR directly affected pilA and fliC promoter. Through bacterial two-hybrid assay, it was found that OxyR can directly interact with PilA and FliC. These results suggest that OxyR plays a major role in the regulating of a variety of virulence traits, and provide a foundation for future research on the global effects of OxyR in A. citrulli.

19.
Microb Pathog ; 50(1): 48-55, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20946946

RESUMEN

Xanthomonas oryzae pv. oryzicola (Xoc), which caused bacterial leaf streak in rice, is a bacterial pathogen limited to the apoplast of the mesophyll tissue. The rpfF that encodes diffusible signal factor (DSF) synthase, played a key role in the virulence of many plant pathogenic bacteria. In this study, the rpf gene cluster was cloned, and the rpfF was deleted in Xoc. It was observed that the rpfF mutant lost the ability to produce DSF molecular, and exhibited a significant reduction of virulence in rice compared to the wild-type strain. Furthermore, the mutation of rpfF impaired EPS production, and led to Xoc cell aggregation. To analyze the differences of proteome expression between Xoc wild type and rpfF mutant, a comparative proteome analysis was performed by two-dimensional gel electrophoresis (2-DE). The results clearly revealed that 48 protein spots were differentially expressed above the threshold ratio of 1.5. Among them, 18 proteins were identified by MS, which were involved in nitrogen transfer, protein folding, elimination of superoxide radicals and flagellar formation. Our results indicated that DSF might play an important role in virulence and growth of Xoc by mediating expression of proteins.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteómica , Percepción de Quorum , Xanthomonas/genética , Xanthomonas/metabolismo , Espectrometría de Masas , Familia de Multigenes , Oryza/microbiología , Polisacáridos Bacterianos , Eliminación de Secuencia/genética , Transducción de Señal , Xanthomonas/patogenicidad
20.
Ecotoxicol Environ Saf ; 74(6): 1595-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21531461

RESUMEN

An indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) has been developed for detection of pretilachlor in water and soil. An immunogen was prepared from haptens of pretilachlor conjugated to bovine serum albumin(BSA). The specific polyclonal antibodies were obtained by immunizing New Zealand white rabbits. The influence of parameters including concentrations of methanol, ionic strength and pH values were optimized to improve the sensitivity of the assay. The optimized ELISA was shown to have a high sensitivity and specificity for pretilachlor. Under optimal conditions, the ELISA has demonstrated an 50% inhibitory concentration (IC(50)) value of 0.0359 mg/L with a limit of detection (LOD, IC(10)) of 6.9 ng/L. The cross-reactivities to some analogs of pretilachlor (acetochlor, butachlor, metazachlor and metalaxyl) were below 1.5%. The average recoveries of pretilachlor from distilled water, tap water, paddy water and soil were in the range of 77.0-115.2% between 0.005 and 5.0mg/L. The results of ELISA for spiked samples were confirmed by GC-ECD with a high correlation coefficient of 0.9950(n=11). Thus, the ELISA proven to be a sensitive, specific, inexpensive and quantitative tool for detection of pretilachlor from four kinds of spiked samples.


Asunto(s)
Acetanilidas/análisis , Agua Dulce/química , Contaminantes del Suelo/análisis , Suelo/química , Contaminantes Químicos del Agua/análisis , Animales , Anticuerpos/análisis , Anticuerpos/inmunología , Monitoreo del Ambiente/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Haptenos/análisis , Haptenos/inmunología , Conejos , Albúmina Sérica Bovina/análisis , Albúmina Sérica Bovina/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA