Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Med Imaging ; 23(1): 196, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017414

RESUMEN

PURPOSES: To develop a deep learning (DL) model to measure the sagittal Cobb angle of the cervical spine on computed tomography (CT). MATERIALS AND METHODS: Two VB-Net-based DL models for cervical vertebra segmentation and key-point detection were developed. Four-points and line-fitting methods were used to calculate the sagittal Cobb angle automatically. The average value of the sagittal Cobb angle was manually measured by two doctors as the reference standard. The percentage of correct key points (PCK), matched samples t test, intraclass correlation coefficient (ICC), Pearson correlation coefficient, mean absolute error (MAE), and Bland‒Altman plots were used to evaluate the performance of the DL model and the robustness and generalization of the model on the external test set. RESULTS: A total of 991 patients were included in the internal data set, and 112 patients were included in the external data set. The PCK of the DL model ranged from 78 to 100% in the test set. The four-points method, line-fitting method, and reference standard measured sagittal Cobb angles were - 1.10 ± 18.29°, 0.30 ± 13.36°, and 0.50 ± 12.83° in the internal test set and 4.55 ± 20.01°, 3.66 ± 18.55°, and 1.83 ± 12.02° in the external test set, respectively. The sagittal Cobb angle calculated by the four-points method and the line-fitting method maintained high consistency with the reference standard (internal test set: ICC = 0.75 and 0.97; r = 0.64 and 0.94; MAE = 5.42° and 3.23°, respectively; external test set: ICC = 0.74 and 0.80, r = 0.66 and 0.974, MAE = 5.25° and 4.68°, respectively). CONCLUSIONS: The DL model can accurately measure the sagittal Cobb angle of the cervical spine on CT. The line-fitting method shows a higher consistency with the doctors and a minor average absolute error.


Asunto(s)
Aprendizaje Profundo , Humanos , Vértebras Cervicales/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Tomografía , Columna Vertebral
2.
Artículo en Inglés | MEDLINE | ID: mdl-37018599

RESUMEN

Heterogeneous graphs with multiple types of nodes and link relationships are ubiquitous in many real-world applications. Heterogeneous graph neural networks (HGNNs) as an efficient technique have shown superior capacity of dealing with heterogeneous graphs. Existing HGNNs usually define multiple meta-paths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models only consider the simple relationships (i.e., concatenation or linear superposition) between different meta-paths, ignoring more general or complex relationships. In this article, we propose a novel unsupervised framework termed Heterogeneous Graph neural network with bidirectional encoding representation (HGBER) to learn comprehensive node representations. Specifically, the contrastive forward encoding is firstly performed to extract node representations on a set of meta-specific graphs corresponding to meta-paths. We then introduce the reversed encoding for the degradation process from the final node representations to each single meta-specific node representations. Moreover, to learn structure-preserving node representations, we further utilize a self-training module to discover the optimal node distribution through iterative optimization. Extensive experiments on five open public datasets show that the proposed HGBER model outperforms the state-of-the-art HGNNs baselines by 0.8%-8.4% in terms of accuracy on most datasets in various downstream tasks.

3.
Med Image Anal ; 69: 101953, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33460880

RESUMEN

Alzheimers disease (AD) is a complex neurodegenerative disease. Its early diagnosis and treatment have been a major concern of researchers. Currently, the multi-modality data representation learning of this disease is gradually becoming an emerging research field, attracting widespread attention. However, in practice, data from multiple modalities are only partially available, and most of the existing multi-modal learning algorithms can not deal with the incomplete multi-modality data. In this paper, we propose an Auto-Encoder based Multi-View missing data Completion framework (AEMVC) to learn common representations for AD diagnosis. Specifically, we firstly map the original complete view to a latent space using an auto-encoder network framework. Then, the latent representations measuring statistical dependence learned from the complete view are used to complement the kernel matrix of the incomplete view in the kernel space. Meanwhile, the structural information of original data and the inherent association between views are maintained by graph regularization and Hilbert-Schmidt Independence Criterion (HSIC) constraints. Finally, a kernel based multi-view method is applied to the learned kernel matrix for the acquisition of common representations. Experimental results achieved on Alzheimers Disease Neuroimaging Initiative (ADNI) datasets validate the effectiveness of the proposed method.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Algoritmos , Enfermedad de Alzheimer/diagnóstico por imagen , Diagnóstico Precoz , Humanos , Neuroimagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA