Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 932: 173042, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38723975

RESUMEN

The electro-Fenton with in situ generated 1O2 and •OH is a promising method for the degradation of micropollutants. However, its application is hindered by the lack of catalysts that can efficiently generate 1O2 and •OH from electrochemical oxygen reduction. Herein, N-doped stacked carbon nanosheets supported Fe single atoms (Fe-NSC) with FeN4 sites were designed for simultaneous generation of 1O2 and •OH to enhance electro-Fenton degradation. Due to the synergistic effect of 1O2 and •OH, a variety of contaminants (phenol, 2,4-dichlorophenol, sulfamethoxazole, atrazine and bisphenol A) were efficiently degraded with high kinetic constants of 0.037-0.071 min-1 by the electro-Fenton with Fe-NSC as cathode (-0.6 V vs Ag/AgCl, pH 6). Moreover, the superior performance for electro-Fenton degradation was well maintained in a wide pH range from 3 to 10 even with interference of various inorganic salt ions. It was found that FeN4 sites with pyridinic N coordination were responsible for its good performance for electro-Fenton degradation. Its 1O2 yield was higher than •OH yield, and the contribution of 1O2 was more significant than •OH for pollutant degradation.

2.
J Hazard Mater ; 476: 134993, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38943885

RESUMEN

Nowadays, solar-driven interfacial steam generation (SISG) is a sustainable and green technology for mitigating the water shortage crisis. Nevertheless, SISG is suffering from the enrichment of volatile organic compounds in condensate water and non-volatile organic compounds in feed water in practical applications. Herein, taking inspiration from nature, a dual-functional bifacial-CuCoNi (Bi-CuCoNi) evaporator with a special biomimetic urchin-like microstructure was successfully prepared. The unique design with 2.5-Dimensional bifacial working sides and urchin-like light absorption microstructure provided the Bi-CuCoNi evaporator with remarkable evaporation performance (1.91 kg m-2 h-1 under 1 kW m-2). Significantly, due to the urchin-like microstructure, the adequately exposed catalytic active sites enabled the Bi-CuCoNi/peroxydisulfate (PDS) system to degrade non-volatile organic pollutants (removal rate of 99.3 % in feed water, close to 100 % in condensate water) and the volatile organic pollutants (removal rate of 99.1 % in feed water, 98.2 % in condensate water) simultaneously. Moreover, the Bi-CuCoNi evaporator achieved non-radical pathway degradation at whole-stages. The dual-functional evaporator successfully integrated advanced oxidation processes (AOPs) into SISG, providing a new idea for high-quality freshwater production from polluted wastewater. ENVIRONMENTAL IMPLICATION: Inspired by nature, a dual-functional bifacial CuCoNi evaporator with a special biomimetic urchin-like microstructure formed by CuCoNi oxide nanowires grown on nickel foam by the hydrothermal synthesis method was successfully prepared. The prepared Bi-CuCoNi evaporator can effectively degrade organic pollutants in feed water and condensate water simultaneously during SISG, thus generating high-quality fresh water. Meanwhile, the health risks associated with the accumulation of organic pollutants in water during traditional SISG were reduced via green and sustainable way. The spatial 2.5-Dimensional structural design of Bi-CuCoNi provided new insights for achieving efficient water evaporation and fresh water generation from various polluted wastewater.

3.
J Colloid Interface Sci ; 676: 1032-1043, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39074406

RESUMEN

Traditional peroxymonosulfate (PMS) catalytic membranes dominated by radical pathways often face interference from complex components in water bodies. Herein, we employed a controlled electro-deposition technique to coat a Ni-Co metal-organic framework (MOF) precursor onto titanium hollow fiber membrane (THFM), followed by high-temperature calcination to synthesize a MOF-derived NiO-NiCo2O4/THFM (M-NNCO-THFM) PMS catalytic membrane. Then, the M-NNCO-THFM filtration integrated with PMS activation (MFPA process) for water treatment. Experimental results demonstrated that the M-NNCO-THFM MFPA process successfully achieved complete phenol (PE) removal via a non-radical-dominated degradation pathway, involving singlet oxygen (1O2) and electron transfer, while exhibiting wide pH adaptability and exceptional stability in complex water matrices. Mechanism analysis revealed that the electron transfer process was significantly enhanced by the MOF-derived heterojunction structure, which increased the flat-band potential from 0.39 eV to 0.56 eV, thereby facilitating efficient electron transfer for PE removal. The non-radical 1O2 pathway was primarily due to the cycling of metal valence states (Ni2+/Co3+), leading to the reduction of Co2+ and its reaction with PMS, resulting in the generation of reactive species. Furthermore, electrochemical measurements indicated that the M-NNCO-THFM exhibited lower charge transfer resistance and enhanced charge transfer efficiency compared to non-MOF-derived NNCO-THFM, corresponding to the superior catalytic performance and electrochemically active surface area of M-NNCO-THFM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA