Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genome Res ; 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35868641

RESUMEN

Histone modifications are critical epigenetic indicators of chromatin state associated with gene expression. Although the reprogramming patterns of H3K4me3 and H3K27me3 have been elucidated in mouse and human preimplantation embryos, the relationship between these marks and zygotic genome activation (ZGA) remains poorly understood. By ultra-low-input native chromatin immunoprecipitation and sequencing, we profiled global H3K4me3 and H3K27me3 in porcine oocytes and in vitro fertilized (IVF) embryos. We found that promoters of ZGA genes occupied sharp H3K4me3 peaks in oocytes, and these peaks became broader after fertilization, and reshaped into sharp again during ZGA. By simultaneous depletion of H3K4me3 demethylase KDM5B and KDM5C, we determined that broad H3K4me3 domain maintenance impaired ZGA gene expression, suggesting its function to prevent premature ZGA entry. By contrast, broad H3K27me3 domains underwent global removal upon fertilization, followed by a re-establishment for H3K4me3/H3K27me3 bivalency in morulae. We also found that bivalent marks were deposited at promoters of ZGA genes, and inhibiting this deposition was correlated with the activation of ZGA genes. It suggests that promoter bivalency contributes to ZGA exit in porcine embryos. Moreover, we demonstrated that aberrant reprogramming of H3K4me3 and H3K27me3 triggered ZGA dysregulation in somatic cell nuclear transfer (SCNT) embryos, whereas H3K27me3-mediated imprinting did not exist in porcine IVF and SCNT embryos. Our findings highlight two previously unknown epigenetic reprogramming modes coordinated with ZGA in porcine preimplantation embryos. Finally, the similarities observed between porcine and human histone modification dynamics suggest that the porcine embryo may also be a useful model for human embryo research.

2.
Cell Rep ; 43(6): 114372, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38878289

RESUMEN

Emerging evidence highlights the regulatory role of paired-like (PRD-like) homeobox transcription factors (TFs) in embryonic genome activation (EGA). However, the majority of PRD-like genes are lost in rodents, thus prompting an investigation into PRD-like TFs in other mammals. Here, we showed that PRD-like TFs were transiently expressed during EGA in human, monkey, and porcine fertilized embryos, yet they exhibited inadequate expression in their cloned embryos. This study, using pig as the research model, identified LEUTX as a key PRD-like activator of porcine EGA through genomic profiling and found that LEUTX overexpression restored EGA failure and improved preimplantation development and cloning efficiency in porcine cloned embryos. Mechanistically, LEUTX opened EGA-related genomic regions and established histone acetylation via recruiting acetyltransferases p300 and KAT2A. These findings reveal the regulatory mechanism of LEUTX to govern EGA in pigs, which may provide valuable insights into the study of early embryo development for other non-rodent mammals.


Asunto(s)
Genoma , Técnicas de Transferencia Nuclear , Animales , Porcinos , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Desarrollo Embrionario/genética , Embrión de Mamíferos/metabolismo , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Acetilación , Clonación de Organismos/métodos , Histonas/metabolismo , Blastocisto/metabolismo
3.
Autophagy ; 19(1): 163-179, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35404187

RESUMEN

Macroautophagy/autophagy is a cellular and energy homeostatic mechanism that contributes to maintain the number of primordial follicles, germ cell survival, and anti-ovarian aging. However, it remains unknown whether autophagy in granulosa cells affects oocyte maturation. Here, we show a clear tendency of reduced autophagy level in human granulosa cells from women of advanced maternal age, implying a potential negative correlation between autophagy levels and oocyte quality. We therefore established a co-culture system and show that either pharmacological inhibition or genetic ablation of autophagy in granulosa cells negatively affect oocyte quality and fertilization ability. Moreover, our metabolomics analysis indicates that the adverse impact of autophagy impairment on oocyte quality is mediated by downregulated citrate levels, while exogenous supplementation of citrate can significantly restore the oocyte maturation. Mechanistically, we found that ACLY (ATP citrate lyase), which is a crucial enzyme catalyzing the cleavage of citrate, was preferentially associated with K63-linked ubiquitin chains and recognized by the autophagy receptor protein SQSTM1/p62 for selective autophagic degradation. In human follicles, the autophagy level in granulosa cells was downregulated with maternal aging, accompanied by decreased citrate in the follicular fluid, implying a potential correlation between citrate metabolism and oocyte quality. We also show that elevated citrate levels in porcine follicular fluid promote oocyte maturation. Collectively, our data reveal that autophagy in granulosa cells is a beneficial mechanism to maintain a certain degree of citrate by selectively targeting ACLY during oocyte maturation.Abbreviations: 3-MA: 3-methyladenine; ACLY: ATP citrate lyase; AMA: advanced maternal age; CG: cortical granule; CHX: cycloheximide; CQ: chloroquine; CS: citrate synthase; COCs: cumulus-oocyte-complexes; GCM: granulosa cell monolayer; GV: germinal vesicle; MII: metaphase II stage of meiosis; PB1: first polar body; ROS: reactive oxygen species; shRNA: small hairpin RNA; SQSTM1/p62: sequestosome 1; TCA: tricarboxylic acid; TOMM20/TOM20: translocase of outer mitochondrial membrane 20; UBA: ubiquitin-associated domain; Ub: ubiquitin; WT: wild-type.


Asunto(s)
ATP Citrato (pro-S)-Liasa , Macroautofagia , Femenino , Humanos , Animales , Porcinos , Proteína Sequestosoma-1/metabolismo , ATP Citrato (pro-S)-Liasa/metabolismo , Ácido Cítrico/metabolismo , Autofagia , Oocitos/metabolismo , Citratos/metabolismo , Aciltransferasas/metabolismo , Ubiquitina/metabolismo , Homeostasis
4.
Adv Sci (Weinh) ; 9(23): e2200057, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35717671

RESUMEN

Early embryos undergo extensive epigenetic reprogramming to achieve gamete-to-embryo transition, which involves the loading and removal of histone variant H2A.Z on chromatin. However, how does H2A.Z regulate gene expression and histone modifications during preimplantation development remains unrevealed. Here, by using ultra-low-input native chromatin immunoprecipitation and sequencing, the genome-wide distribution of H2A.Z is delineated in mouse oocytes and early embryos. These landscapes indicate that paternal H2A.Z is removed upon fertilization, followed by unbiased accumulation on parental genomes during zygotic genome activation (ZGA). Remarkably, H2A.Z exhibits hierarchical accumulation as different peak types at promoters: promoters with double H2A.Z peaks are colocalized with H3K4me3 and indicate transcriptional activation; promoters with a single H2A.Z peak are more likely to occupy bivalent marks (H3K4me3+H3K27me3) and indicate development gene suppression; promoters with no H2A.Z accumulation exhibit persisting gene silencing in early embryos. Moreover, H2A.Z depletion changes the enrichment of histone modifications and RNA polymerase II binding at promoters, resulting in abnormal gene expression and developmental arrest during lineage commitment. Furthermore, similar transcription and accumulation patterns between mouse and porcine embryos indicate that a dual role of H2A.Z in regulating the epigenome required for proper gene expression is conserved during mammalian preimplantation development.


Asunto(s)
Código de Histonas , Histonas , Animales , Cromatina/genética , Cromatina/metabolismo , Embrión de Mamíferos/metabolismo , Código de Histonas/genética , Histonas/genética , Histonas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA