Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Idioma
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(2): 226-233, 2023 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-37139752

RESUMEN

Magnetic resonance (MR) imaging is an important tool for prostate cancer diagnosis, and accurate segmentation of MR prostate regions by computer-aided diagnostic techniques is important for the diagnosis of prostate cancer. In this paper, we propose an improved end-to-end three-dimensional image segmentation network using a deep learning approach to the traditional V-Net network (V-Net) network in order to provide more accurate image segmentation results. Firstly, we fused the soft attention mechanism into the traditional V-Net's jump connection, and combined short jump connection and small convolutional kernel to further improve the network segmentation accuracy. Then the prostate region was segmented using the Prostate MR Image Segmentation 2012 (PROMISE 12) challenge dataset, and the model was evaluated using the dice similarity coefficient (DSC) and Hausdorff distance (HD). The DSC and HD values of the segmented model could reach 0.903 and 3.912 mm, respectively. The experimental results show that the algorithm in this paper can provide more accurate three-dimensional segmentation results, which can accurately and efficiently segment prostate MR images and provide a reliable basis for clinical diagnosis and treatment.


Asunto(s)
Imagen por Resonancia Magnética , Enfermedades de la Próstata , Humanos , Masculino , Imagen por Resonancia Magnética/métodos , Enfermedades de la Próstata/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA