Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Br J Cancer ; 129(12): 1915-1929, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37884683

RESUMEN

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a highly lethal malignancy with few therapeutic options. Cyclin­dependent kinase 9 (CDK9), a potential therapeutic target of many cancers, has been recently observed to be upregulated in ccRCC patients. Therefore, we aimed to investigate the therapeutic potential of CDK9 in ccRCC and develop a novel CDK9 inhibitor with low toxicity for ccRCC treatment. METHODS: The expression of CDK9 in ccRCC was checked using the online database and tissue microarray analysis. shRNA-mediated CDK9 knockdown and CDK inhibitor were applied to evaluate the effect of CDK9 on ccRCC. Medicinal chemistry methods were used to develop a new CDK9 inhibitor with drugability. RNA-seq and ChIP-seq experiments were conducted to explore the mechanism of action. MTS, western blotting, and colony formation assays were performed to evaluate the anti-ccRCC effects of CDK9 knockdown and inhibition in vitro. The in vivo anti-tumour efficacy was evaluated in a xenograft model. RESULTS: CDK9 is overexpressed and associated with poor survival in ccRCC. Knockdown or inhibition of CDK9 significantly suppressed ccRCC cells. XPW1 was identified as a new potent and selective CDK9 inhibitor with excellent anti-ccRCC activity and low toxicity. In mechanism, XPW1 transcriptionally inhibited DNA repair programmes in ccRCC cells, resulting in an excellent anti-tumour effect. CDK9 and BRD4 were two highly correlated transcriptional regulators in ccRCC patients, and the BRD4 inhibitor JQ1 enhanced XPW1's anti-ccRCC effects in vitro and in vivo. CONCLUSIONS: This work provides valuable insights into the therapeutic potential of CDK9 in ccRCC. The CDK9 inhibitor XPW1 would be a novel therapeutic agent for targeting ccRCC, alone or in rational combinations.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Proteínas que Contienen Bromodominio/antagonistas & inhibidores , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/patología , Proteínas Nucleares/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Bioorg Chem ; 140: 106795, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37657195

RESUMEN

Hepatic fibrosis remains a great challenge clinically. The orphan nuclear receptor Nur77 is recently suggested as the critical regulator of transforming growth factor-ß (TGF-ß) signaling, which plays a central role in multi-organic fibrosis. Herein, we optimized our previously reported Nur77-targeted compound 9 h for attempting to develop effective and safe anti-hepatic fibrosis agents. The critical pharmacophore scaffold of pyridine-carbonyl-hydrazine-1-carboxamide was retained, while the naphthalene ring was replaced with an aromatic ring containing pyridyl or indole groups. Four series of derivatives were thus generated, among which the compound 16f had excellent binding activity toward Nur77-LBD (KD = 470 nM) with the best inhibitory activity against the TGF- ß 1 activation of hepatic stellate cells (HSCs) and low cytotoxicity to normal mice liver AML-12 cells (IC50 > 80 µM). In mice, 16f displayed potent activity against CCl4-induced liver fibrosis with improved liver function. Mechanistically, 16f-mediated inactivation of HSC and suppression of liver fibrosis were associated with its enhancement of autophagic flux in a Nur77-dependent manner. Together, 16f was identified as a potential anti-liver fibrosis agent. Our study suggests that Nur77 may serve as a critical anti-hepatic fibrosis target.


Asunto(s)
Anticonvulsivantes , Cirrosis Hepática , Animales , Ratones , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Antifibróticos , Autofagia , Células Estrelladas Hepáticas
3.
Bioorg Chem ; 141: 106887, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37801784

RESUMEN

Docosahexaenoic acid (DHA) has a strong anti-inflammatory effect and is reported to bind to the ligand-binding domain (LBD) of the anti-inflammatory modulator Nur77. Recently, we have found that DHA ethanolamine (DHA-EA) exerts anti-inflammatory activity as a Nur77 modulator. Herein, using a fragment splicing-based drug design strategy, nineteen new DHA-EA derivatives were synthesized starting from DHA algae oil and then evaluated for their anti-inflammatory activity. The cell-based cytotoxicity assays showed that compounds J2, J9, and J18 had no noticeable effect on the cell morphology and viability of RAW 264.7, LO2, and MCR-5 cells. Meanwhile, J9 was identified as the most potent anti-inflammatory molecule in LPS-stimulated RAW 264.7 cells. Also, the molecular docking study and SPR assay demonstrated that J9 exhibited in vitro Nur77-binding affinity (KD = 8.58 × 10-6 M). Moreover, the mechanism studies revealed that the anti-inflammatory activity of J9 was associated with its inhibition of NF-κB activation in a Nur77-dependent manner. Notably, J9 could attenuate LPS-induced inflammation in the mouse acute lung injury (ALI) model. Overall, the DHA-EA derivative J9 targeting Nur77 is a potential candidate for developing anti-inflammatory and ALI-treating agents.


Asunto(s)
Ácidos Docosahexaenoicos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Animales , Ratones , Antiinflamatorios/efectos adversos , Ácidos Docosahexaenoicos/farmacología , Inflamación/tratamiento farmacológico , Lipopolisacáridos , Simulación del Acoplamiento Molecular , Etanolaminas/farmacología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/antagonistas & inhibidores
4.
J Enzyme Inhib Med Chem ; 38(1): 2227777, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37357764

RESUMEN

Nur77 modulators have emerged as a promising therapeutic approach for hepatocellular carcinoma. In this study, a structure-based rational drug design approach was used to design and synthesise a series of 4-((8-hydroxy-2-methylquinolin-4-yl)amino)benzoylhydrazone derivatives based on the binding characteristics of our previously reported 10g and the native ligand 3NB at the binding Site C of Nur77. Cell-based cytotoxicity assays revealed that compound TMHA37 demonstrated the highest cytotoxicity against all tested cancer cells. The induced fit docking and binding pose metadynamics simulation suggested that TMHA37 was the most promising Nur77 binder at Site C. Molecular dynamics simulation validated the stable binding of TMHA37 to Nur77's Site C but not to Sites A or B. Specifically, TMHA37 bound strongly to Nur77-LBD (KD = 445.3 nM) and could activate Nur77's transcriptional activity. Furthermore, TMHA37 exhibited antitumor effects by blocking the cell cycle at G2/M phase and inducing cell apoptosis in a Nur77-dependent manner.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Apoptosis , Sitios de Unión , División Celular , Antineoplásicos/farmacología , Simulación del Acoplamiento Molecular , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Línea Celular Tumoral
5.
Molecules ; 28(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36770611

RESUMEN

Kinases are among the most important families of biomolecules and play an essential role in the regulation of cell proliferation, apoptosis, metabolism, and other critical physiological processes. The dysregulation and gene mutation of kinases are linked to the occurrence and development of various human diseases, especially cancer. As a result, a growing number of small-molecule drugs based on kinase targets are being successfully developed and approved for the treatment of many diseases. The indole/azaindole/oxindole moieties are important key pharmacophores of many bioactive compounds and are generally used as excellent scaffolds for drug discovery in medicinal chemistry. To date, 30 ATP-competitive kinase inhibitors bearing the indole/azaindole/oxindole scaffold have been approved for the treatment of diseases. Herein, we summarize their research and development (R&D) process and describe their binding models to the ATP-binding sites of the target kinases. Moreover, we discuss the significant role of the indole/azaindole/oxindole skeletons in the interaction of their parent drug and target kinases, providing new medicinal chemistry inspiration and ideas for the subsequent development and optimization of kinase inhibitors.


Asunto(s)
Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas , Humanos , Oxindoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Sitios de Unión , Adenosina Trifosfato/metabolismo
6.
Bioorg Chem ; 129: 106119, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36116323

RESUMEN

JMJD6 is a member of the JmjC domain-containing family and has been identified as a promising therapeutic target for treating estrogen-induced and triple-negative breast cancer. To develop novel anti-breast cancer agents, we synthesized a class of N-(1-(6-(substituted phenyl)-pyridazine-3-yl)-piperidine-3-yl)-amine derivatives as potential JMJD6 inhibitors. Among them, the anti-cancer compound A29 was an excellent JMJD6 binder (KD = 0.75 ± 0.08 µM). It could upregulate the mRNA and protein levels of p53 and its downstream effectors p21 and PUMA by inhibiting JMJD6. Besides, A29 displayed potent anti-proliferative activities against tested breast cancer cells by the induction of cell apoptosis and cell cycle arrest. Significantly, A29 also promoted a remarkable reduction in tumor growth, with a TGI value of 66.6% (50 mg/kg, i.p.). Taken together, our findings suggest that A29 is a potent JMJD6 inhibitor bearing a new scaffold acting as a promising drug candidate for the treatment of breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/farmacología , Puntos de Control del Ciclo Celular , Neoplasias de la Mama Triple Negativas/patología , Apoptosis , Piperidinas/farmacología , Antineoplásicos/farmacología , Aminas/farmacología , Línea Celular Tumoral , Proliferación Celular
7.
Bioorg Chem ; 120: 105645, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35121551

RESUMEN

In continuing our study on discovering new Nur77-targeting anti-inflammatory agents with natural skeletons, we combined adamantyl group and hydroxamic acid moiety with flavonoid nucleus, synthesized three series of flavonoid derivatives with a similar structure like CD437, and evaluated their activities against LPS-induced inflammation. Compound B7 was found to be an excellent Nur77 binder (Kd = 3.55 × 10-7 M) and a potent inhibitor of inflammation, which significantly decreased the production of cytokines in vitro, such as NO, IL-6, IL-1ß, and TNF-α, at concentrations of 1.25, 2.5, and 5 µM. Mechanistically, B7 modulated the colocalization of Nur77 at mitochondria and inhibited the lipopolysaccharides (LPS)-induced inflammation via the blockade of NF-κB activation in a Nur77-dependent manner. Additionally, B7 showed in vivo anti-inflammatory activity in the LPS-induced mice model of acute lung injury (ALI). These data suggest that the Nur77-targeting flavonoid derivatives can be particularly useful for further pharmaceutical development for the treatment of inflammatory diseases such as ALI.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Antiinflamatorios/efectos adversos , Citocinas , Flavonoides/farmacología , Flavonoides/uso terapéutico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Lipopolisacáridos/efectos adversos , Ratones , FN-kappa B
8.
Bioorg Chem ; 121: 105651, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35182885

RESUMEN

Nur77, an orphan nuclear receptor, has antitumor activity in hepatocellular carcinoma (HCC). However, its antitumor mechanisms of action in HCC are complicated and rarely reported. Our recent work demonstrated that certain quinoline-Schiff-base derivatives were good Nur77 mediators that exerted excellent anti-HCC activities in vitro and in vivo. Interestingly, these compounds shared similar chemical structures, but they displayed different Nur77-targeted anticancer mechanisms of action. As a continuous work, we synthesized a series of 4-(quinoline-4-amino) benzoylhydrazide derivatives and evaluated their anti-HCC activity and binding affinity to Nur77 in vitro. Compound 4-PQBH emerged as the best Nur77 binder (KD = 1.17 µM) and has potentially selective cytotoxicity to HCC cells. Mechanistically, 4-PQBH extensively induced caspase-independent cytoplasmic vacuolization and paraptosis through Nur77-mediated ER stress and autophagy. Moreover, 4-PQBH exhibited an effective xenograft tumor inhibition by modulating Nur77-dependent cytoplasmic vacuolation and paraptosis. This paper is the first to disclose that chemotherapeutic agents targeting Nur77-mediated cytoplasmic vacuolization and paraptosis may provide a promising strategy to combat HCC that frequently evade the apoptosis program.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/patología
9.
Bioorg Chem ; 113: 105008, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34089944

RESUMEN

We previously reported 5-((8-methoxy-2-methylquinolin-4-yl)amino)-1H-indole- 2-carbohydrazide derivatives as new Nur77 modulators. In this study, we explored whether the 8-methoxy-2-methylquinoline moiety and bicyclic aromatic rings at the N'-methylene position were critical for their antitumor activity against hepatocellular carcinoma (HCC). For this purpose, a small library of 5-substituted 1H-indole-2-carbohydrazide derivatives was designed and synthesized. We found that the 8-methoxy-2-methylquinoline moiety was a fundamental structure for its biological function, while the introduction of the bicyclic aromatic ring into the N'-methylene greatly improved its anti-tumor effect. We found that the representative compound 10E had a high affinity to Nur77. The KD values were in the low micromolar (2.25-4.10 µM), which were coincident with its IC50 values against the tumor cell lines (IC50 < 3.78 µM). Compound 10E could induce autophagic cell death of liver cancer cells by targeting Nur77 to mitochondria while knocking down Nur77 greatly impaired anti-tumor effect. These findings provide an insight into the structure-activity relation of Quinoline-Indole-Schiff base derivatives and further demonstrate that antitumor agents targeting Nur77 may be considered as a promising strategy for HCC therapy.


Asunto(s)
Antineoplásicos/síntesis química , Muerte Celular Autofágica/efectos de los fármacos , Indoles/química , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Quinolinas/química , Bases de Schiff/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Sitios de Unión , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Diseño de Fármacos , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/química , Relación Estructura-Actividad
10.
Bioorg Chem ; 113: 104961, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34023650

RESUMEN

In the present study, a new series of chalcone adamantly arotinoids (chalcone AdArs) derived from RAR antagonist MX781, are synthesized, characterized, and evaluated for the biological activities in vitro. The studies of antiproliferative activity and RXRα-binding affinity of target compounds result in the discovery of a lead candidate (WA15), which is a good RXRα binder (Kd = 2.89 × 10-6 M) with potent antiproliferative activity against human cancer cell lines (IC50 ≈ 10 µM) and low toxic to normal LO2 and MRC-5 cells (IC50 > 50 µM). Different from MX781, WA15 eliminates RARα antagonist activity but inhibits 9-cis-RA-induced RXRα transactivation activity in a dose-dependent manner. Compound WA15 is found to be a good apoptosis inducer in various cancer cells and promotes cell apoptosis in an RXRα-independent manner. Besides, WA15 shows the induction of proteasome-dependent RXRα degradation which might enhance the WA15-induced apoptosis. Finally, the immunoblotting indicates that WA15 can inhibit the TNFα-induced IKK activation and IκBα degradation, suggesting that the anticancer activity of WA15 might be related to the inhibition of IKK/NF-κB signal pathway.


Asunto(s)
Antineoplásicos/farmacología , Chalonas/farmacología , Descubrimiento de Drogas , Receptor alfa X Retinoide/antagonistas & inhibidores , Retinoides/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Chalonas/síntesis química , Chalonas/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Receptor alfa X Retinoide/metabolismo , Retinoides/síntesis química , Retinoides/química , Relación Estructura-Actividad
11.
J Enzyme Inhib Med Chem ; 36(1): 1436-1453, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34229558

RESUMEN

This study describes the synthesis and vacuole-inducing activity of 5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-indole-2-carbohydrazide derivatives, including five potent derivatives 12c, 12 g, 12i, 12n, and 12A that exhibit excellent vacuole-inducing activity. Remarkably, 12A effectively induces methuosis in tested cancer cells but not human normal cells. In addition, 12A exhibits high pan-cytotoxicity against different cancer cell lines but is hardly toxic to normal cells. It is found that the 12A-induced vacuoles are derived from macropinosomes but not autophagosomes. The 12A-induced cytoplasmic vacuoles may originate from the endoplasmic reticulum (ER) and be accompanied by ER stress. The MAPK/JNK signalling pathway is involved in the 12A-induced methuotic cell death. Moreover, 12A exhibits significant inhibition of tumour growth in the MDA-MB-231 xenograft mouse model. The excellent potency and selectivity of 12A prompt us to select it as a good lead compound for further development of methuosis inducers and investigation of the molecular and cellular mechanisms underlying methuosis.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Hidrazinas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Humanos , Hidrazinas/síntesis química , Hidrazinas/química , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
12.
Chem Biodivers ; 18(12): e2100671, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34738709

RESUMEN

To discover new anticancer agents, two series of thiosemicarboxamide derivatives were synthesized and evaluated for their antiproliferative activity against human cancer cells in vitro. Most target compounds (especially 3f, 3g, and 3h) exhibit potent antiproliferative activity against HeLa cells. Importantly, compound 3h, bearing a 4-methylphenyl substituent at N position of thiourea moiety, has significant and broad-spectrum inhibitory activities against cancer cells (HepG2, HeLa, MDA-MB231, A875, and H460 cells) with low IC50 values (<5.0 µM) and shows low toxicity to normal LO2 and MRC-5 cells. Further studies show that compound 3h exerts high inhibitory activity in cancer cells by inducing the G2/M-phase arrest of cancer cells. Collectively, this study presents compound 3h as a new entity for the development of cell cycle arrest inducers for the treatment of cancer.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Sulfhidrilo/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/síntesis química , Compuestos de Sulfhidrilo/química
13.
Amino Acids ; 52(5): 793-809, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32430875

RESUMEN

Glycine plays a key role in rapidly proliferating cancer cells such as A549 cells. Targeting glycine metabolism is considered as a potential means for cancer treatment. However, the drug-induced alterations in glycine metabolism have not yet been investigated. Herein, a total of 34 glycine metabolites were examined in A549 cells with or without anticancer drug treatment. This work showed all tested anticancer agents could alter glycine metabolism in A549 cells including inhibition of pyruvate metabolism and down-regulation of betaine aldehyde and 5'-phosphoribosylglycinamide. Principal component analysis and orthogonal partial least-squares discrimination analysis exhibited the difference between control and each drug-treated group. In general, cisplatin, camptothecin, and SAHA could induce the significant down-regulation of more metabolites, compared with afatinib, gefitinib, and targretin. Both glycine, serine and threonine metabolism, and purine metabolism were significantly disturbed by the treatment with afatinib, gefitinib, and targretin. However, the treatment using cisplatin, camptothecin, and SAHA was considered to be highly responsible for the perturbation of glycine, serine and threonine metabolism, and cysteine and methionine metabolism. Finally, multivariate analysis for control and all drug-treated groups revealed 11 altered metabolites with a significant difference. It implies anti-cancer agents with different mechanisms of action might induce different comprehensive changes of glycine metabolomics. The current study provides fundamental insights into the acquisition of the role of anti-cancer agents in glycine metabolism while suppressing cancer cell proliferation, and may aid the development of cancer treatment targeting glycine metabolism.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Antineoplásicos/farmacología , Glicina/metabolismo , Neoplasias Pulmonares/metabolismo , Redes y Vías Metabólicas , Metaboloma/efectos de los fármacos , Células A549 , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología
14.
Bioorg Chem ; 105: 104456, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33217634

RESUMEN

In this work, three series of ω-3 polyunsaturated fatty acid-alkanolamine derivatives (PUFA-AAs) were synthesized, characterized and their anti-inflammatory activity in vivo was evaluated. Compounds 4a, 4f, and 4k exhibited marked anti-inflammatory activity in LPS-stimulated RAW 264.7 cells. The most promising compound 4k dose-dependently suppressed the cytokines with IC50 values in the low micromolar range. Further, 4k exhibited potential in vitro Nur77-binding affinity (Kd = 6.99 × 10-6 M) which is consistent with the result of docking studies. Next, the anti-inflammatory mechanism of 4k was found to be through NF-κB signal pathway in a Nur77-dependent manner. Moreover, we also observed 4k significantly inhibited LPS-induced expression of cytokines (IL-6, TNF-α, and IL-1ß) through suppressing NF-κB activation and attenuated LPS-induced inflammation in mouse acute lung injury (ALI) model. In conclusion, the study strongly suggests that the PUFA-AA derivatives can be particularly as new Nur77 mediators for further treatment in inflammatory diseases.


Asunto(s)
Aminas/química , Antiinflamatorios/síntesis química , Ácidos Grasos Insaturados/síntesis química , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Animales , Antiinflamatorios/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Diseño de Fármacos , Activación Enzimática/efectos de los fármacos , Ácidos Grasos Insaturados/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Células RAW 264.7 , Transducción de Señal
15.
Bioorg Chem ; 102: 104064, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32653610

RESUMEN

In continuation of our previous work on the investigation of CDK9 inhibitors bearing indole moiety for the discovery of novel anticancer agents, novel methylenehydrazine-1-carboxamide derivatives with (5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-indole scaffold were designed, synthesized, and evaluated for the CDK9 inhibitory activity and anticancer activity. Biological activity results demonstrated that most of these derivatives possessed good inhibitory on the kinase activity of CDK9 such as blocking its phosphorylation function and inhibiting HIV-1 transcription. Compound 12i was found to be the most potent CDK9 inhibitor and exhibited excellent anticancer activity against HepG2, A375, MCF-7, and A549, but low toxic on normal cells including HaCaT and MCF-10A. Further studies revealed that as a result of CDK9 inhibition and subsequent inhibition of phosphorylation at Serine 2 of the RNAPII CTD, the representative compound 12i dose-dependently increased cleaved PARP level, exerting its antiproliferative effect through induction of apoptosis in cancer cells. Finally, the molecular docking analysis implied that 12i had a good binding affinity with CDK9. In summary, 12i is a potent CDK9 inhibitor and can be considered as a good lead-candidate for developing potential anticancer drugs.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Indoles/química , Simulación del Acoplamiento Molecular/métodos , Pirimidinas/síntesis química , Pirimidinas/uso terapéutico , Diseño de Fármacos , Humanos , Estructura Molecular , Pirimidinas/farmacología , Relación Estructura-Actividad
16.
Bioorg Chem ; 96: 103592, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32044517

RESUMEN

In the effort to develop novel quinoline derivatives for the treatment of liver cancer, we synthesized a series of N'-Substituted methylene-4-(quinoline-4-amino) benzoylhydrazides and evaluated their biological activities as anticancer agents. Compounds 5h and 5j were found to be the potent antiproliferative agents against HepG2 cell line with an IC50 value of 12.6 ± 0.1 µM and 27.3 ± 1.7 µM, respectively. The most effective compound 5h also exhibited potent cytotoxicity against SMMC-7721 and Huh7 cells with IC50 values of 9.6 ± 0.7 µM and 6.3 ± 0.2 µM, respectively. Inspiringly, both 5h and 5j exhibited lower cytotoxic property in normal cells than hepatic carcinoma cells. Compounds 5h and 5j could down-regulate mRNA level of c-Myc and expression level of c-Myc. Meanwhile, they decreased expression level of anti-apoptotic protein Bcl-2 and increased expression levels of pro-apoptotic protein Bax and cleaved PARP with reference to tubulin. So various assays including cell colony formation, cell cycle distribution, as well as cell apoptosis and migration were performed to understand their antitumor role. It was confirmed that 5h and 5j inhibited the growth of HepG2 cells due to their anti-survival effect, induction of cell cycle arrest and cell apoptosis, and inhibition of cell migration. These results demonstrated that 5h might be as potential lead compounds to develop anticancer agents for the treatment of hepatocellular carcinoma.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Hidrazinas/química , Hidrazinas/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Hidrazinas/síntesis química , Neoplasias Hepáticas/metabolismo , Quinolinas/síntesis química , Quinolinas/química , Quinolinas/farmacología
17.
J Enzyme Inhib Med Chem ; 35(1): 880-896, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32223461

RESUMEN

Abnormal alterations in the expression and biological function of retinoid X receptor alpha (RXRα) have a key role in the development of cancer. Potential modulators of RXRα as anticancer agents are explored in growing numbers of studies. A series of (4/3-(pyrimidin-2-ylamino)benzoyl)hydrazine-1-carboxamide/carbothioamide derivatives are synthesised and evaluated for anticancer activity as RXRα antagonists in this study. Among all synthesised compounds, 6A shows strong antagonist activity (half maximal effective concentration (EC50) = 1.68 ± 0.22 µM), potent anti-proliferative activity against human cancer cell lines HepG2 and A549 cells (50% inhibition of cell viability (IC50) values < 10 µM), and low cytotoxic property in normal cells such as LO2 and MRC-5 cells (IC50 values > 100 µM). Further bioassays indicate that 6A inhibits 9-cis-RA-induced activity in a dose-dependent manner, and selectively binds to RXRα-=LΒD with submicromolar affinity (Kd = 1.20 × 10-7 M). 6A induces time-and dose-dependent cleavage of poly ADP-ribose polymerase, and significantly stimulates caspase-3 activity, leading to RXRα-dependent apoptosis. Finally, molecular docking studies predict the binding modes for RXRα-LBD and 6A.


Asunto(s)
Amidas/farmacología , Antineoplásicos/farmacología , Receptor alfa X Retinoide/antagonistas & inhibidores , Células A549 , Amidas/síntesis química , Amidas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
18.
Bioorg Med Chem ; 27(20): 115069, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31492533

RESUMEN

A novel series of fatty acid synthase (FAS) inhibitors with D-(-)-pantolactone moiety and potential utility for the treatment of obesity were designed, synthesized and characterized, in which the structure of compound 3k was further confirmed by single X-ray diffraction. The mouse FAS inhibitory activity of synthesized compounds was evaluated. Major synthesized compounds (except 3g, 3i, 3k, 3l, and 3n) exhibited moderate FAS inhibitory properties with IC50 values in the range of 13.68 ±â€¯1.52-33.19 ±â€¯1.39 µM, reference inhibitor C75 has IC50 value of 13.86 ±â€¯2.79 µM. Eight compounds (3c, 3d, 3e, 3f, 3j, 3m, 3q and 3r) also displayed inhibitory effect on lipid accumulation in human HepG2 cells. Additionally, the molecular docking study revealed that compound 3m having good inhibition activity against FAS and lipid accumulation also showed promising binding affinities with hFAS, while its binding model with hFAS (PDB ID: 4PIV) was different from that of reference compound C75.


Asunto(s)
4-Butirolactona/análogos & derivados , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular , Receptor fas/antagonistas & inhibidores , 4-Butirolactona/síntesis química , 4-Butirolactona/química , 4-Butirolactona/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Células Hep G2 , Humanos , Lípidos/antagonistas & inhibidores , Estructura Molecular , Estereoisomerismo , Relación Estructura-Actividad , Células Tumorales Cultivadas , Receptor fas/metabolismo
19.
Mar Drugs ; 17(9)2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31470583

RESUMEN

Penicillum citreonigrum XT20-134 (MCCC 3A00956) is a fungus with cytotoxic activity, derived from deep-sea sediment. Five new compounds, adeninylpyrenocine (1), 2-hydroxyl-3-pyrenocine-thio propanoic acid (2), ozazino-cyclo-(2,3-dihydroxyl-trp-tyr) (3), 5,5-dichloro-1-(3,5-dimethoxyphenyl)-1,4-dihydroxypentan-2-one (4), and 2,3,4-trihydroxybutyl cinnamate (5), together with 19 known compounds (6-24), were isolated from an ethyl acetate (EtOAc) extract of its fermentation. The structures of the new compounds were comprehensively characterized by high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS), 1D and 2D nuclear magnetic resonance (NMR). All isolates were evaluated for their cytotoxic activities. The heteroatom-containing new compounds 2 and 4 showed potent cytotoxicity to the human hepatoma tumor cell Bel7402 with IC50 values of 7.63 ± 1.46, 13.14 ± 1.41 µM and the human fibrosarcoma tumor cell HT1080 with IC50 values of 10.22 ± 1.32, 16.53 ± 1.67 µM, respectively.


Asunto(s)
Organismos Acuáticos/química , Citotoxinas/química , Penicillium/química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Citotoxinas/farmacología , Humanos , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos
20.
J Org Chem ; 83(12): 6754-6761, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29786437

RESUMEN

The first oxidative C(sp3)-H phosphonylation of tertiary aliphatic amines has been developed. The use of cobalt acetate as a catalyst, N-hydroxyphthalimide as a cocatalyst, and air as an oxidant enabled the conversion of tertiary aromatic and aliphatic amines into α-aminophosphonates in moderate to excellent yields under mild conditions via a cross dehydrogenative coupling reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA