Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 452(2): 431-9, 1976 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-1009120

RESUMEN

Sulphatases B1alpha and B1beta (EC 3.1.6.1) have been prepared as apparently homogeneous proteins by chromatography on ConA-Sepharose. Both have a mol. wt. of 56 000, and E1%280nm of 17 and a turnover number of 8600 min-1 with nitrocatechol sulphate as substrate. Their amino acid compositions are identical: like sulphatase A, the sulphatases B are rich in proline and yield glucosamine on hydrolysis. They are not altered by treatment with neuraminidase. Both fractions show strong UDP-N-acetylgalactosamine 4-sulphatase activity, weak iduronate sulphatase activity, but no significant heparan N-sulphatase activity. It is suggested that the physiological activity of sulphatase B is that of the N-acetylgalactosamine 4-sulphatase which is lacking in the Maroteaux-Lamy Syndrome.


Asunto(s)
Arilsulfatasas , Hígado/enzimología , Sulfatasas , Aminoácidos/análisis , Animales , Arilsulfatasas/aislamiento & purificación , Arilsulfatasas/metabolismo , Bovinos , Cromatografía de Afinidad , Concanavalina A , Humanos , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , Cinética , Peso Molecular , Especificidad de la Especie , Sulfatasas/aislamiento & purificación , Sulfatasas/metabolismo
2.
Neuroscientist ; 7(3): 232-45, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11499402

RESUMEN

Plasmalogens are unique glycerophospholipids because they have an enol ether double bond at the sn-1 position of the glycerol backbone. They are found in all mammalian tissues, with ethanolamine plasmalogens 10-fold higher than choline plasmalogens except in muscles. The enol ether double bond at the sn-1 position makes plasmalogens more susceptible to oxidative stress than the corresponding ester-bonded glycerophospholipids. Plasmalogens are not only structural membrane components and a reservoir for second messengers but may also be involved in membrane fusion, ion transport, and cholesterol efflux. Plasmalogens may also act as antioxidants, thus protecting cells from oxidative stress. Receptor-mediated degradation of plasmalogens by plasmalogen-selective phospholipase A2 results in the generation of arachidonic acid, eicosanoids, and platelet activating factor. Low levels of these metabolites have trophic effects, but at high concentration they are cytotoxic and may be involved in allergic response, inflammation, and trauma. Levels of plasmalogens are decreased in several neurological disorders including Alzheimer's disease, ischemia, and spinal cord trauma. This may be due to the stimulation of plasmalogen-selective phospholipase A2. A deficiency of plasmalogens in peroxisomal disorders and Niemann-Pick type C disease indicates that this deficiency may be due to the decreased activity of plasmalogen synthesizing enzymes that occur in peroxisomes.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Plasmalógenos/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Isquemia Encefálica/metabolismo , Membrana Celular/metabolismo , Humanos , Trastorno Peroxisomal/metabolismo , Plasmalógenos/química
3.
FEBS Lett ; 509(1): 115-8, 2001 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-11734217

RESUMEN

In our previous studies, TPA treatment of LA-N-1 cells stimulated the production of diacylglycerol in nuclei, probably through the activation of a phospholipase C. Stimulation of the synthesis of nuclear phosphatidylcholine by the activation of CTP:phosphocholine cytidylyltransferase was also observed. The present data show that both effects were inhibited by the pretreatment of the cells with D609, a selective phosphatidylcholine-phospholipase C inhibitor, indicating that the diacylglycerol produced through the hydrolysis of phosphatidylcholine in the nuclei is reutilized for the synthesis of nuclear phosphatidylcholine and is required for the activation of CTP:phosphocholine cytidylyltransferase.


Asunto(s)
Antioxidantes/farmacología , Hidrocarburos Aromáticos con Puentes/farmacología , Núcleo Celular/metabolismo , Diglicéridos/fisiología , Neuroblastoma/metabolismo , Fosfatidilcolinas/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Tionas/farmacología , División Celular , Citidililtransferasa de Colina-Fosfato/metabolismo , Diglicéridos/metabolismo , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Humanos , Hidrólisis , Metabolismo de los Lípidos , Norbornanos , Tiocarbamatos , Factores de Tiempo , Células Tumorales Cultivadas , Fosfolipasas de Tipo C/metabolismo
4.
Free Radic Biol Med ; 30(11): 1263-73, 2001 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-11368924

RESUMEN

Brain tissue contains multiple forms of intracellular phospholipase A(2) (PLA(2)) activity that differ from each other in many ways including their response to specific inhibitors. The systemic administration of kainic acid to rats produces a marked increase in cPLA(2) activity in neurons and astrocytes. This is associated with increased lipid peroxidation as evidenced by accumulation of 4-hydroxynonenal (4-HNE) modified proteins. The present study describes the effect of specific inhibitors of Ca(2+)-dependent or Ca(2+)-independent PLA(2) on kainite-induced excitotoxic injury in rat hippocampal slices. Specific inhibitors of Ca(2+)-dependent PLA(2) prevented the decrease of a neuronal marker, GluR1, and increase in cPLA(2) and 4-HNE immunoreactivities in slices treated with kainate. This shows that cPLA(2) plays an important role in kainite-induced neurotoxicity and that cPLA(2) inhibitors can be used to protect hippocampal slices from damage induced by kainate.


Asunto(s)
Calcio/farmacología , Inhibidores Enzimáticos/farmacología , Agonistas de Aminoácidos Excitadores/toxicidad , Hipocampo/efectos de los fármacos , Ácido Kaínico/toxicidad , Neuronas/efectos de los fármacos , Fosfolipasas A/antagonistas & inhibidores , Aldehídos/farmacología , Animales , Bovinos , Hipocampo/enzimología , Hipocampo/metabolismo , Técnicas para Inmunoenzimas , Peroxidación de Lípido , Neuronas/enzimología , Fosfolipasas A/metabolismo , Ratas , Ratas Wistar , Receptores de Ácido Kaínico/metabolismo
5.
Neuroscience ; 1(6): 519-22, 1976 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11370246

RESUMEN

Arylsulphatase A and 2',3'-cyclic nucleotide 3'-phosphohydrolase activities of myelin deficient mutant mice brains were studied. The results indicated that there were no changes in arylsulphatase A activity of the developing mutant brain, whereas the activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase decreased considerably. The data obtained in this study suggest that in brain arylsulphatase A activity is localized in cells other than oligodendroglia.


Asunto(s)
2',3'-Nucleótido Cíclico Fosfodiesterasas/metabolismo , Arilsulfatasas/metabolismo , Química Encefálica/genética , Encéfalo/enzimología , Ratones Mutantes Neurológicos/metabolismo , Vaina de Mielina/enzimología , Factores de Edad , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiopatología , Femenino , Galactosiltransferasas , Balactosiltransferasa de Gangliósidos , Masculino , Ratones , Vaina de Mielina/genética , Psicosina/metabolismo
6.
Neuroscience ; 121(4): 891-8, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14580939

RESUMEN

Recent evidence shows that secretory phospholipase A2 (sPLA2) may play a role in membrane fusion and fission, and may thus affect neurotransmission. The present study therefore aimed to elucidate the effects of sPLA2 on vesicle exocytosis. External application of group IIA sPLA2 (purified crotoxin subunit B or purified human synovial sPLA2) caused an immediate increase in exocytosis and neurotransmitter release in pheochromocytoma-12 (PC12) cells, detected by carbon fiber electrodes placed near the cells, or by changes in membrane capacitance of the cells. EGTA and a specific inhibitor of sPLA2 activity, 12-epi-scalaradial, abolished the increase in neurotransmitter release, indicating that the effect of sPLA2 was dependent on calcium and sPLA2 enzymatic activity. A similar increase in neurotransmitter release was also observed in hippocampal neurons after external application of sPLA2, as detected by changes in membrane capacitance of the neurons. In contrast to external application, internal application of sPLA2 to PC12 cells and neurons produced blockade of neurotransmitter release. Our recent studies showed high levels of sPLA2 activity in the normal rat hippocampus, medulla oblongata and cerebral neocortex. The sPLA2 activity in the hippocampus was significantly increased, after kainate-induced neuronal injury. The observed effects of sPLA2 on neurotransmitter release in this study may therefore have a physiological, as well as a pathological role.


Asunto(s)
Exocitosis/fisiología , Neuronas/metabolismo , Neurotransmisores/metabolismo , Fosfolipasas A/metabolismo , Terminales Presinápticos/enzimología , Animales , Animales Recién Nacidos , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Células Cultivadas , Quelantes/farmacología , Inhibidores Enzimáticos/farmacología , Exocitosis/efectos de los fármacos , Fosfolipasas A2 Grupo II , Hipocampo/efectos de los fármacos , Hipocampo/enzimología , Ácido Kaínico/farmacología , Fusión de Membrana/efectos de los fármacos , Fusión de Membrana/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/enzimología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Células PC12 , Técnicas de Placa-Clamp , Fosfolipasas A/farmacología , Fosfolipasas A2 , Terminales Presinápticos/efectos de los fármacos , Ratas , Ratas Wistar , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/enzimología , Vesículas Sinápticas/metabolismo
7.
J Mol Neurosci ; 16(2-3): 263-72; discussion 279-84, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11478381

RESUMEN

Plasmalogens are glycerophospholipids of neural membranes containing vinyl ether bonds. Their synthetic pathway is located in peroxisomes and endoplasmic reticulum. The rate-limiting enzymes are in the peroxisomes and are induced by docosahexaenoic acid (DHA). Plasmalogens often contain arachidonic acid (AA) or DHA at the sn-2 position of the glycerol moiety. The receptor-mediated hydrolysis of plasmalogens by cytosolic plasmalogen-selective phospholipase A2 generates AA or DHA and lysoplasmalogens. AA is metabolized to eicosanoids. The mechanism of signaling with DHA is not known. The plasmalogen-selective phospholipase A2 differs from other intracellular phospholipases A2 in molecular mass, kinetic properties, substrate specificity, and response to glycosaminoglycans, gangliosides, and sialoglycoproteins. A major portion of [3H]DHA incorporated into neural membranes is found at the sn-2 position of ethanolamine glycerophospholipids. Studies with a mutant cell line defective in plasmalogen biosynthesis indicate that the incorporation of DHA is reduced in this RAW 264.7 cell line by 50%. In contrast, the incorporation of AA remains unaffected. This is reversed completely when the growth medium is supplemented with sn-1-hexadecylglycerol, suggesting that DHA can be selectively targeted for incorporation into plasmalogens. We suggest that deficiencies of DHA and plasmalogens in peroxisomal disorders, Alzheimer's disease (AD), depression, and attention deficit hyperactivity disorders (ADHD) may be responsible for abnormal signal transduction associated with learning disability, cognitive deficit, and visual dysfunction. These abnormalities in the signal-transduction process can be partially corrected by supplementation with a diet enriched with DHA.


Asunto(s)
Encéfalo/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Isoenzimas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfolipasas A/metabolismo , Plasmalógenos/metabolismo , Animales , Ácidos Araquidónicos/metabolismo , Señalización del Calcio , Bovinos , Línea Celular , Membrana Celular/metabolismo , Ácidos Docosahexaenoicos/uso terapéutico , Retículo Endoplásmico/metabolismo , Humanos , Macrófagos/metabolismo , Lípidos de la Membrana/metabolismo , Ratones , Peroxisomas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolipasas A2 , Ratas , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Especificidad por Sustrato , Síndrome de Zellweger/dietoterapia , Síndrome de Zellweger/metabolismo
8.
J Mol Neurosci ; 14(3): 123-35, 2000 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10984188

RESUMEN

The deacylation-reacylation cycle is an important mechanism responsible for the introduction of polyunsaturated fatty acids into neural membrane glycerophospholipids. It involves four enzymes, namely acyl-CoA synthetase, acyl-CoA hydrolase, acyl-CoA: lysophospholipid acyltransferase, and phospholipase A2. All of these enzymes have been purified and characterized from brain tissue. Under normal conditions, the stimulation of neural membrane receptors by neurotransmitters and growth factors results in the release of arachidonic acid from neural membrane glycerophospholipids. The released arachidonic acid acts as a second messenger itself. It can be further metabolized to eicosanoids, a group of second messengers involved in a variety of neurochemical functions. A lysophospholipid, the second product of reactions catalyzed by phospholipase A2, is rapidly acylated with acyl-CoA, resulting in the maintenance of the normal and essential neural membrane glycerophospholipid composition. However, under pathological situations (ischemia), the overstimulation of phospholipase A2 results in a rapid generation and accumulation of free fatty acids including arachidonic acid, eicosanoids, and lipid peroxides. This results in neural inflammation, oxidative stress, and neurodegeneration. In neural membranes, the deacylation-reacylation cycle maintains a balance between free and esterified fatty acids, resulting in low levels of arachidonic acid and lysophospholipids. This is necessary for not only normal membrane integrity and function, but also for the optimal activity of the membrane-bound enzymes, receptors, and ion channels involved in normal signal-transduction processes.


Asunto(s)
Coenzima A Transferasas/metabolismo , Glicerofosfolípidos/metabolismo , Neuronas/enzimología , Fosfolipasas A/metabolismo , Acilación , Animales , Ácido Araquidónico/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Fosfolipasas A2
9.
J Mol Neurosci ; 12(2): 123-30, 1999 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10527456

RESUMEN

Rat spinal cord contains a high level of calcium-dependent cytosolic phospholipase A2 (PLA2) activity. A dense immunoreactivity is present in motor neurons from cervical, thoracic, lumbar, and sacral regions of rat spinal cord. Under normal conditions, this enzyme liberates arachidonic acid, a polyunsaturated fatty acid that is a second messenger itself, and a precursor for eicosanoids. However, under pathological conditions during spinal cord injury, intracellular calcium increases so the cytosolic PLA2 may also be involved in the release and accumulation of arachidonic acid, eicosanoids, and lipid peroxides.


Asunto(s)
Fosfolipasas A/análisis , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/enzimología , Animales , Ácido Araquidónico/metabolismo , Femenino , Macaca fascicularis , Masculino , Microscopía Electrónica , Fosfolipasas A/metabolismo , Fosfolipasas A2 , Ratas , Ratas Wistar , Médula Espinal/ultraestructura
10.
J Neurotrauma ; 17(10): 915-25, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11063057

RESUMEN

The initial mechanical tissue disruption of spinal cord injury (SCI) is followed by a period of secondary injury that increases the size of the lesion. The secondary injury has long been thought to be due to the continuation of cellular destruction through necrotic (or passive) cell death. Recent evidence from brain injury and ischemia suggested that cellular apoptosis, an active form of programmed cell death seen during development, could play a role in CNS injury in adulthood. Here, we review the evidence that apoptosis may be important in the pathophysiology of SCI. There is now strong morphological and biochemical evidence from a number of laboratories demonstrating the presence of apoptosis after SCI. Apoptosis occurs in populations of neurons, oligodendrocytes, microglia, and, perhaps, astrocytes. The death of oligodendrocytes in white matter tracts continues for many weeks after injury and may contribute to post-injury demyelination. The mediators of apoptosis after SCI are not well understood, but there is a close relationship between microglia and dying oligodendrocytes, suggesting that microglial activation may be involved. There is also evidence for the activation of important intracellular pathways known to be involved in apoptosis in other cells and systems. For example, some members of the caspase family of cysteine proteases are activated after SCI. It appears that the evolution of the lesion after SCI involves both necrosis and apoptosis. It is likely that better understanding of apoptosis after SCI will lead to novel strategies for therapeutic interventions that can diminish secondary injury.


Asunto(s)
Apoptosis/fisiología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Animales , Humanos , Necrosis , Degeneración Nerviosa/patología , Neuronas/metabolismo , Neuronas/patología , Transducción de Señal , Traumatismos de la Médula Espinal/patología
11.
Neurochem Int ; 30(6): 517-22, 1997 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9152992

RESUMEN

Phospholipases A2 are a heterogeneous class of enzymes that hydrolyse fatty acids from the sn-2 2 position of membrane phospholipids. Prolonged stimulation of phospholipase A2 may damage membrane integrity, not only because of the loss of essential phospholipid from the lipid bilayer but also as a result of an uncontrollable Ca2+ influx. The increased levels of intracellular Ca2+ may be responsible for enhanced lipolysis, proteolysis and DNA fragmentation. This process along with the accumulation of lipid peroxidation products may be associated with neurodegeneration in acute neural trauma (ischemia, head and spinal cord injuries) and neurodegenerative diseases (Alzheimer's disease).


Asunto(s)
Degeneración Nerviosa , Fosfolipasas A/metabolismo , Animales , Ácido Araquidónico/metabolismo , Encéfalo/enzimología , Humanos , Fosfolipasas A2 , Receptores de N-Metil-D-Aspartato/fisiología
12.
Neurochem Int ; 25(4): 377-84, 1994 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7529611

RESUMEN

Continuous glutamate exposure produced widespread neuronal damage in mixed whole dissociated murine spinal cord cell cultures. Ethidium bromide and acridine orange staining revealed that a 24 h glutamate exposure produced nearly 98% neuronal cell death but the underlying glia were spared. Continuous exposure to glutamate, N-methyl-D-aspartate (NMDA), kainate and quisqualate produced time-dependent and dose-dependent cell death as measured by the assay of lactate dehydrogenase activity in the cell culture media. Glutamate (500 microM), NMDA (100 microM) and kainate (500 microM) were equally neurotoxic. In contrast, quisqualate (100 microM) was only partially neurotoxic compared to the other glutamate analogs. The neurotoxicity of glutamate was blocked by the NMDA antagonist, MK-801. The neurotoxicity of kainate and quisqualate was blocked with the non-NMDA antagonist CNQX. Continuous exposure to (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) was not neurotoxic, even at concentrations up to 1 mM.


Asunto(s)
Ácido Glutámico/farmacología , Médula Espinal/efectos de los fármacos , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Naranja de Acridina , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , Maleato de Dizocilpina/farmacología , Etidio , Ácido Kaínico/farmacología , L-Lactato Deshidrogenasa/metabolismo , Ratones , N-Metilaspartato/farmacología , Ácido Quiscuálico/farmacología , Médula Espinal/fisiología , Coloración y Etiquetado
13.
Brain Res ; 604(1-2): 180-4, 1993 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-8457846

RESUMEN

Neuron-enriched cultures from fetal mouse spinal cord contain diacylglycerol and monoacylglycerol lipases. The treatment of neuron-enriched cultures with glutamate or NMDA resulted in a dose- and time-dependent stimulation in diacylglycerol and monoacylglycerol lipase activities. The elevation in the activities of lipases was blocked by the NMDA receptor antagonists, dextrorphan and MK-801, suggesting that lipase stimulation is a receptor-mediated process. The treatment of neuron-enriched cultures with kainate had no effect on diacylglycerol and monoacylglycerol lipase activities. The stimulation of diacylglycerol and monoacylglycerol lipase activities by glutamate and NMDA suggests that these enzymes may play an important role in processes mediated by the NMDA type of the glutamate receptors.


Asunto(s)
Glutamatos/farmacología , Lipoproteína Lipasa/metabolismo , Monoacilglicerol Lipasas/metabolismo , Neuronas/enzimología , Médula Espinal/enzimología , Animales , Células Cultivadas , Dextrorfano/farmacología , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Cinética , Ratones , Ratones Endogámicos , N-Metilaspartato/farmacología
14.
Brain Res ; 788(1-2): 223-31, 1998 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-9555027

RESUMEN

The systemic administration of kainate (10 mg/ml) into adult Wistar rats produces seizures and neurodegeneration. We have studied the effect of kainate administration on cPLA2 and COX-2 immunoreactivities after 3 days and 1, 2, 4 and 11 weeks. The cPLA2 immunoreactivity was increased in hippocampal neurons at 1 and 3 days after kainate injection suggesting that PLA2 may be involved in neurodegeneration. Increased cPLA2 and COX-2 immunoreactivities in astrocytes at 1, 2, 4 and 11 weeks after kainate injection indicate an adaptive astrocytic response that may be associated with gliosis.


Asunto(s)
Citoplasma/enzimología , Hipocampo/enzimología , Isoenzimas/análisis , Peroxidasas/análisis , Fosfolipasas A/análisis , Prostaglandina-Endoperóxido Sintasas/análisis , Animales , Ciclooxigenasa 2 , Inmunohistoquímica , Inyecciones Intravenosas , Ácido Kaínico , Masculino , Microscopía/métodos , Microscopía Electrónica , Neuronas/enzimología , Fosfolipasas A2 , Ratas , Ratas Wistar
15.
Neurosci Lett ; 131(1): 97-9, 1991 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-1791985

RESUMEN

Ibotenic acid was injected into the nucleus basalis magnocellularis region of rat brain in order to study whether an elevation of lipase activities was associated with the degeneration of cholinergic neurons in this potential animal model of Alzheimer's disease. Two plasma membrane fractions were prepared from different regions of ibotenate injected (right hemisphere) and non-injected (left hemisphere) rat brain. One plasma membrane fraction was from synaptosomes (SPM) and the other from glial and neuronal cell bodies (PM). Activities of mono- and diacylglycerol lipases in these plasma membrane fractions were markedly increased (3- to 5-fold) in hippocampus, midbrain and frontal cortical regions of rat brain at 10 days after the injection of ibotenate. The activity of choline acetyltransferase was decreased in frontal cortex but unchanged in hippocampus and midbrain. Our results suggest that the increase in lipase activity is much more widespread and non-specific than is the decrease in cholinergic function.


Asunto(s)
Ganglios Basales/enzimología , Encéfalo/enzimología , Ácido Iboténico/toxicidad , Lipoproteína Lipasa/metabolismo , Monoacilglicerol Lipasas/metabolismo , Enfermedad de Alzheimer/enzimología , Animales , Ganglios Basales/efectos de los fármacos , Ganglios Basales/patología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Membrana Celular/enzimología , Modelos Animales de Enfermedad , Lateralidad Funcional , Masculino , Neuroglía/enzimología , Neuronas/enzimología , Especificidad de Órganos , Ratas , Ratas Endogámicas , Sinaptosomas/enzimología
16.
Brain Res Bull ; 49(3): 139-53, 1999 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10435777

RESUMEN

Intracellular phospholipases A2 (PLA2) are a diverse group of enzymes with a growing number of members. These enzymes hydrolyze membrane phospholipids into fatty acid and lysophospholipids. These lipid products may serve as intracellular second messengers or can be further metabolized to potent inflammatory mediators, such as eicosanoids and platelet-activating factors. Several inhibitors of nonneural intracellular PLA2 have been recently discovered. However, nothing is known about their neurochemical effects, mechanism of action or toxicity in human or animal models of neurological disorders. Elevated intracellular PLA2 activities, found in neurological disorders strongly associated with inflammation and oxidative stress (ischemia, spinal cord injury, and Alzheimer's disease), can be treated with specific, potent and nontoxic inhibitors of PLA2 that can cross blood-brain barrier without harm. Currently, potent intracellular PLA2 inhibitors are not available for clinical use in human or animal models of neurological disorders, but studies on this interesting topic are beginning to emerge. The use of nonspecific intracellular PLA2 inhibitors (quinacrine, heparin, gangliosides, vitamin E) in animal model studies of neurological disorders in vivo has provided some useful information on tolerance, toxicity, and effectiveness of these compounds.


Asunto(s)
Química Encefálica/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Fosfolipasas A/antagonistas & inhibidores , Animales , Secuencia de Carbohidratos , Inhibidores Enzimáticos/uso terapéutico , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Enfermedades del Sistema Nervioso/enzimología , Fosfolipasas A2
17.
J Chromatogr A ; 673(2): 149-58, 1994 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-8055107

RESUMEN

Heparin interacts with lipases, phospholipases and kinases. Immobilized heparin can be used for the purification of diacylglycerol and triacylglycerol lipases, phospholipases A2 and C and protein and lipid kinases. The use of heparin-Sepharose is an important development in analytical and preparative techniques for the separation and isolation of lipases, phospholipases and kinases.


Asunto(s)
Cromatografía Liquida/métodos , Lipasa/aislamiento & purificación , Fosfolipasas/aislamiento & purificación , Fosfotransferasas/aislamiento & purificación , Animales , Heparina , Humanos , Sefarosa/análogos & derivados
18.
Chem Phys Lipids ; 106(1): 1-29, 2000 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10878232

RESUMEN

Neural membranes contain several classes of glycerophospholipids which turnover at different rates with respect to their structure and localization in different cells and membranes. The glycerophospholipid composition of neural membranes greatly alters their functional efficacy. The length of glycerophospholipid acyl chain and the degree of saturation are important determinants of many membrane characteristics including the formation of lateral domains that are rich in polyunsaturated fatty acids. Receptor-mediated degradation of glycerophospholipids by phospholipases A(l), A(2), C, and D results in generation of second messengers such as arachidonic acid, eicosanoids, platelet activating factor and diacylglycerol. Thus, neural membrane phospholipids are a reservoir for second messengers. They are also involved in apoptosis, modulation of activities of transporters, and membrane-bound enzymes. Marked alterations in neural membrane glycerophospholipid composition have been reported to occur in neurological disorders. These alterations result in changes in membrane fluidity and permeability. These processes along with the accumulation of lipid peroxides and compromised energy metabolism may be responsible for the neurodegeneration observed in neurological disorders.


Asunto(s)
Encéfalo/metabolismo , Glicerofosfolípidos/metabolismo , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/metabolismo , Animales , Apoptosis , Glicerofosfolípidos/clasificación , Humanos , Lípidos de la Membrana/clasificación , Lípidos de la Membrana/metabolismo , Membranas/metabolismo , Fosfolipasas/metabolismo , Plasmalógenos/metabolismo , Sistemas de Mensajero Secundario
19.
Lipids ; 25(6): 344-8, 1990 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-2366631

RESUMEN

Bovine heart ChoGpl (choline glycerophospholipid) and bovine brain EtnGpl (ethanolamine glycerophospholipid) contain diacyl, alkenylacyl and alkylacyl analogs. Purification of plasmalogens was achieved using R. delemar lipase and N. naja naja phospholipase A2 digestion. The R. delemar lipase hydrolyzes the acyl bond at the 1-position of 1,2-diacyl glycerophospholipids. The N. naja naja phospholipase A2 has greater activity with diacyl and alkylacyl than with alkenylacyl glycerophospholipids. These enzymes were mainly used to remove diacyl and alkylacyl analogs respectively. When the diacyl types were removed by double incubation with R. delemar lipase, the plasmalogen content was 94.2% +/- 0.21% (mean +/- S.E.M., n = 4) for PlsCho (plasmenylcholine) and 94.9% +/- 0.19% (mean +/- S.E.M., n = 3) for PlsEtn (plasmenylethanolamine). Recoveries were 74% and 88% respectively. These partially purified plasmalogens were treated with N. naja naja phospholipase A2. Finally, 97.7% +/- 0.24% (mean +/- S.E.M., n = 4) and 98.8% +/- 0.27% (mean +/- S.E.M., n = 3) pure plasmalogens were obtained for PlsCho and PlsEtn respectively. Plasmalogens were recovered in an overall yield of 7.7% +/- 0.7% (mean +/- S.E.M., n = 4) and 10.2% +/- 1.2% (mean +/- S.E.M., n = 3) for PlsCho and PlsEtn.


Asunto(s)
Lipasa/metabolismo , Fosfolipasas A/metabolismo , Fosfolipasas/metabolismo , Plasmalógenos/aislamiento & purificación , Animales , Bovinos , Hidrólisis , Fosfolipasas A2 , Rhizopus/enzimología , Serpientes
20.
Adv Exp Med Biol ; 416: 309-13, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-9131165

RESUMEN

Plasmalogens are hydrolyzed by a plasmalogen-selective phospholipase A2. This enzyme, purified from bovine brain, does not require Ca2+ and is localized in cytosol. It has a molecular mass of 39 kDa and is strongly inhibited by glycosaminoglycans, gangliosides, and sialoglycoproteins. These molecules may be involved in the regulation of its enzymic activity. Plasmalogen-selective phospholipase A2 plays an important role in the release of free fatty acids and platelet-activating factor during trauma.


Asunto(s)
Química Encefálica/fisiología , Fosfolipasas A/metabolismo , Plasmalógenos/metabolismo , Animales , Encéfalo/enzimología , Bovinos , Humanos , Fosfolipasas A2 , Factor de Activación Plaquetaria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA