Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 176(5): 1128-1142.e18, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30686582

RESUMEN

Collateral arteries are an uncommon vessel subtype that can provide alternate blood flow to preserve tissue following vascular occlusion. Some patients with heart disease develop collateral coronary arteries, and this correlates with increased survival. However, it is not known how these collaterals develop or how to stimulate them. We demonstrate that neonatal mouse hearts use a novel mechanism to build collateral arteries in response to injury. Arterial endothelial cells (ECs) migrated away from arteries along existing capillaries and reassembled into collateral arteries, which we termed "artery reassembly". Artery ECs expressed CXCR4, and following injury, capillary ECs induced its ligand, CXCL12. CXCL12 or CXCR4 deletion impaired collateral artery formation and neonatal heart regeneration. Artery reassembly was nearly absent in adults but was induced by exogenous CXCL12. Thus, understanding neonatal regenerative mechanisms can identify pathways that restore these processes in adults and identify potentially translatable therapeutic strategies for ischemic heart disease.


Asunto(s)
Circulación Colateral/fisiología , Corazón/crecimiento & desarrollo , Regeneración/fisiología , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Quimiocina CXCL12/metabolismo , Vasos Coronarios/crecimiento & desarrollo , Células Endoteliales/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/fisiología , Receptores CXCR4/metabolismo , Transducción de Señal
2.
Circulation ; 142(14): 1361-1373, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33017215

RESUMEN

BACKGROUND: Many graft configurations are clinically used for valve-sparing aortic root replacement, some specifically focused on recapitulating neosinus geometry. However, the specific impact of such neosinuses on valvular and root biomechanics and the potential influence on long-term durability are unknown. METHODS: Using a custom 3-dimenstional-printed heart simulator with porcine aortic roots (n=5), the anticommissural plication, Stanford modification, straight graft (SG), Uni-Graft, and Valsalva graft configurations were tested in series using an incomplete counterbalanced measures design, with the native root as a control, to mitigate ordering effects. Hemodynamic and videometric data were analyzed using linear models with conduit as the fixed effect of interest and valve as a fixed nuisance effect with post hoc pairwise testing using Tukey's correction. RESULTS: Hemodynamics were clinically similar between grafts and control aortic roots. Regurgitant fraction varied between grafts, with SG and Uni-Graft groups having the lowest regurgitant fractions and anticommissural plication having the highest. Root distensibility was significantly lower in SG versus both control roots and all other grafts aside from the Stanford modification (P≤0.01 for each). All grafts except SG had significantly higher cusp opening velocities versus native roots (P<0.01 for each). Relative cusp opening forces were similar between SG, Uni-Graft, and control groups, whereas anticommissural plication, Stanford modification, and Valsalva grafts had significantly higher opening forces versus controls (P<0.01). Cusp closing velocities were similar between native roots and the SG group, and were significantly lower than observed in the other conduits (P≤0.01 for each). Only SG and Uni-Graft groups experienced relative cusp closing forces approaching that of the native root, whereas relative forces were >5-fold higher in the anticommissural plication, Stanford modification, and Valsalva graft groups. CONCLUSIONS: In this ex vivo modeling system, clinically used valve-sparing aortic root replacement conduit configurations have comparable hemodynamics but differ in biomechanical performance, with the straight graft most closely recapitulating native aortic root biomechanics.


Asunto(s)
Aorta/cirugía , Insuficiencia de la Válvula Aórtica/cirugía , Implantación de Prótesis Vascular , Prótesis Vascular , Modelos Cardiovasculares , Impresión Tridimensional , Animales , Humanos , Porcinos
3.
Cytokine ; 127: 154974, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31978642

RESUMEN

Although ischemic heart disease is the leading cause of death worldwide, mainstay treatments ultimately fail because they do not adequately address disease pathophysiology. Restoring the microvascular perfusion deficit remains a significant unmet need and may be addressed via delivery of pro-angiogenic cytokines. The therapeutic effect of cytokines can be enhanced by encapsulation within hydrogels, but current hydrogels do not offer sufficient clinical translatability due to unfavorable viscoelastic mechanical behavior which directly impacts the ability for minimally-invasive catheter delivery. In this report, we examine the therapeutic implications of dual-stage cytokine release from a novel, highly shear-thinning biocompatible catheter-deliverable hydrogel. We chose to encapsulate two protein-engineered cytokines, namely dimeric fragment of hepatocyte growth factor (HGFdf) and engineered stromal cell-derived factor 1α (ESA), which target distinct disease pathways. The controlled release of HGFdf and ESA from separate phases of the hyaluronic acid-based hydrogel allows extended and pronounced beneficial effects due to the precise timing of release. We evaluated the therapeutic efficacy of this treatment strategy in a small animal model of myocardial ischemia and observed a significant benefit in biological and functional parameters. Given the encouraging results from the small animal experiment, we translated this treatment to a large animal preclinical model and observed a reduction in scar size, indicating this strategy could serve as a potential adjunct therapy for the millions of people suffering from ischemic heart disease.


Asunto(s)
Hidrogeles/administración & dosificación , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Animales , Catéteres , Células Cultivadas , Modelos Animales de Enfermedad , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Ácido Hialurónico/administración & dosificación , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/metabolismo , Miocardio/patología , Ratas
4.
J Biomech Eng ; 142(1)2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31253992

RESUMEN

Few technologies exist that can provide quantitative data on forces within the mitral valve apparatus. Marker-based strain measurements can be performed, but chordal geometry and restricted optical access are limitations. Foil-based strain sensors have been described and work well, but the sensor footprint limits the number of chordae that can be measured. We instead utilized fiber Bragg grating (FBG) sensors-optical strain gauges made of 125 µm diameter silica fibers-to overcome some limitations of previous methods of measuring chordae tendineae forces. Using FBG sensors, we created a force-sensing neochord (FSN) that mimics the natural shape and movement of native chordae. FBG sensors reflect a specific wavelength of light depending on the spatial period of gratings. When force is applied, the gratings move relative to one another, shifting the wavelength of reflected light. This shift is directly proportional to force applied. The FBG sensors were housed in a protective sheath fashioned from a 0.025 in. flat coil, and attached to the chordae using polytetrafluoroethylene suture. The function of the force-sensing neochordae was validated in a three-dimensional (3D)-printed left heart simulator, which demonstrated that FBG sensors provide highly sensitive force measurements of mitral valve chordae at a temporal resolution of 1000 Hz. As ventricular pressures increased, such as in hypertension, chordae forces also increased. Overall, FBG sensors are a viable, durable, and high-fidelity sensing technology that can be effectively used to measure mitral valve chordae forces and overcome some limitations of other such technologies.


Asunto(s)
Cuerdas Tendinosas , Válvula Mitral , Fibras Ópticas
5.
Dis Model Mech ; 16(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37942584

RESUMEN

Sepsis-associated acute kidney injury is associated with high morbidity and mortality in critically ill patients. Cell-free hemoglobin (CFH) is released into the circulation of patients with severe sepsis and the levels of CFH are independently associated with mortality. CFH treatment increased cytotoxicity in the human tubular epithelial cell line HK-2. To better model the intact kidney, we cultured human kidney organoids derived from induced pluripotent stem cells. We treated human kidney organoids grown using both three-dimensional and transwell protocols with CFH for 48 h. We found evidence for increased tubular toxicity, oxidative stress, mitochondrial fragmentation, endothelial cell injury and injury-associated transcripts compared to those of the untreated control group. To evaluate the protective effect of clinically available small molecules, we co-treated CFH-injured organoids with ascorbate (vitamin C) or acetaminophen for 48 h. We found significantly decreased toxicity, preservation of endothelial cells and reduced mitochondrial fragmentation in the group receiving ascorbate following CFH treatment. This study provides direct evidence that ascorbate or ascorbic acid protects human kidney cells from CFH-induced damage such as that in sepsis-associated acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Sepsis , Humanos , Células Endoteliales/metabolismo , Riñón/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Hemoglobinas/farmacología , Hemoglobinas/metabolismo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Lesión Renal Aguda/tratamiento farmacológico
6.
J Biosci Bioeng ; 135(6): 493-499, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36966053

RESUMEN

Cardiovascular disease, primarily caused by coronary artery disease, is the leading cause of death in the United States. While standard clinical interventions have improved patient outcomes, mortality rates associated with eventual heart failure still represent a clinical challenge. Macrorevascularization techniques inadequately address the microvascular perfusion deficits that persist beyond primary and secondary interventions. In this work, we investigate a photosynthetic oxygen delivery system that rescues the myocardium following acute ischemia. Using a simple microfluidic system, we encapsulated Synechococcus elongatus into alginate hydrogel microparticles (HMPs), which photosynthetically deliver oxygen to ischemic tissue in the absence of blood flow. We demonstrate that HMPs improve the viability of S. elongatus during the injection process and allow for simple oxygen diffusion. Adult male Wistar rats (n = 45) underwent sham surgery, acute ischemia reperfusion surgery, or a chronic ischemia reperfusion surgery, followed by injection of phosphate buffered saline (PBS), S. elongatus suspended in PBS, HMPs, or S. elongatus encapsulated in HMPs. Treatment with S. elongatus-HMPs mitigated cellular apoptosis and improved left ventricular function. Thus, delivery of S. elongatus encapsulated in HMPs improves clinical translation by utilizing a minimally invasive delivery platform that improves S. elongatus viability and enhances the therapeutic benefit of a novel photosynthetic system for the treatment of myocardial ischemia.


Asunto(s)
Cianobacterias , Hidrogeles , Ratas , Animales , Masculino , Microfluídica , Ratas Wistar , Miocardio , Oxígeno
7.
J Vasc Access ; : 11297298231153716, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765464

RESUMEN

INTRODUCTION: Central venous catheters (CVCs) are often trimmed during heart transplantation and pediatric cardiac surgery. However, the risk of endothelial injury caused by the cut tip of the CVC has not been evaluated. We hypothesized that there is no difference in the degree of endothelial injury associated with trimmed CVCs versus standard untrimmed CVCs. METHODS: In four adult male sheep, the left external jugular vein was exposed in three segments, one designated for an untouched control group, one for the trimmed CVC group, and one for the untrimmed CVC group. Trimmed and untrimmed CVC tips were rotated circumferentially within their respective segments to abrade the lumen of the vein. The vein samples were explanted, and two representative sections from each sample were analyzed using hematoxylin and eosin (H&E) staining, as well as with immunohistochemistry against CD31, von Willebrand factor (vWF), endothelial nitric oxide synthase (eNOS), and caveolin. Higher immunohistochemical stain distributions and intensities are associated with normal health and function of the venous endothelium. Data are presented as counts with percentages or as means with standard error. RESULTS: H&E staining revealed no evidence of endothelial injury in 6/8 (75%) samples from the untouched control group, and no injury in 4/8 (50%) samples from both the trimmed and untrimmed CVC groups (p = 0.504). In all remaining samples from each group, only mild endothelial injury was observed. Immunohistochemical analysis comparing trimmed CVCs versus untrimmed CVCs revealed no difference in the percentage of endothelial cells staining positive for CD31 (57.5% ± 7.2% vs 55.0% ± 9.2%, p = 0.982), vWF (73.8% ± 8.0% vs 62.5% ± 9.6%, p = 0.579), eNOS (66.3% ± 4.2% vs 63.8% ± 7.5%, p = 0.962), and caveolin (53.8% ± 5.0% vs 51.3% ± 4.4%, p = 0.922). There were no significant differences between the groups in the distributions of stain intensity for CD31, vWF, eNOS, and caveolin. CONCLUSION: Trimmed CVCs do not increase endothelial injury compared to standard untrimmed CVCs.

8.
Stem Cell Res Ther ; 13(1): 355, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35883199

RESUMEN

BACKGROUND: In diabetic kidney disease, high glucose damages specialized cells called podocytes that filter blood in the glomerulus. In vitro culture of podocytes is crucial for modeling of diabetic nephropathy and genetic podocytopathies and to complement animal studies. Recently, several methods have been published to derive podocytes from human-induced pluripotent stem cells (iPSCs) by directed differentiation. However, these methods have major variations in media composition and have not been compared. METHODS: We characterized our accelerated protocol by guiding the cells through differentiation with four different medias into MIXL1+ primitive streak cells with Activin A and CHIR for Wnt activation, intermediate mesoderm PAX8+ cells via increasing the CHIR concentration, nephron progenitors with FGF9 and Heparin for stabilization, and finally into differentiated podocytes with Activin A, BMP-7, VEGF, reduced CHIR, and retinoic acid. The podocyte morphology was characterized by scanning and transmission electron microscopy and by flow cytometry analysis for podocyte markers. To confirm cellular identity and niche localization, we performed cell recombination assays combining iPSC-podocytes with dissociated mouse embryonic kidney cells. Finally, to test iPSC-derived podocytes for the modeling of diabetic kidney disease, human podocytes were exposed to high glucose. RESULTS: Podocyte markers were expressed at similar or higher levels for our accelerated protocol as compared to previously published protocols that require longer periods of tissue culture. We confirmed that the human podocytes derived from induced pluripotent stem cells in twelve days integrated into murine glomerular structures formed following seven days of culture of cellular recombinations. We found that the high glucose-treated human podocytes displayed actin rearrangement, increased cytotoxicity, and decreased viability. CONCLUSIONS: We found that our accelerated 12-day method for the differentiation of podocytes from human-induced pluripotent stem cells yields podocytes with comparable marker expression to longer podocytes. We also demonstrated that podocytes created with this protocol have typical morphology by electron microscopy. The podocytes have utility for diabetes modeling as evidenced by lower viability and increased cytotoxicity when treated with high glucose. We found that multiple, diverse methods may be utilized to create iPSC-podocytes, but closely mimicking developmental cues shortened the time frame required for differentiation.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Células Madre Pluripotentes Inducidas , Podocitos , Animales , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Glomérulos Renales/metabolismo , Ratones , Podocitos/metabolismo
9.
J Thorac Cardiovasc Surg ; 163(2): e161-e171, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32747120

RESUMEN

OBJECTIVE: The objective was to design and evaluate a clinically relevant, novel ex vivo bicuspid aortic valve model that mimics the most common human phenotype with associated aortic regurgitation. METHODS: Three bovine aortic valves were mounted asymmetrically in a previously validated 3-dimensional-printed left heart simulator. The non-right commissure and the non-left commissure were both shifted slightly toward the left-right commissure, and the left and right coronary cusps were sewn together. The left-right commissure was then detached and reimplanted 10 mm lower than its native height. Free margin shortening was used for valve repair. Hemodynamic status, high-speed videography, and echocardiography data were collected before and after the repair. RESULTS: The bicuspid aortic valve model was successfully produced and repaired. High-speed videography confirmed prolapse of the fused cusp of the baseline bicuspid aortic valve models in diastole. Hemodynamic and pressure data confirmed accurate simulation of diseased conditions with aortic regurgitation and the subsequent repair. Regurgitant fraction postrepair was significantly reduced compared with that at baseline (14.5 ± 4.4% vs 28.6% ± 3.4%; P = .037). There was no change in peak velocity, peak gradient, or mean gradient across the valve pre- versus postrepair: 293.3 ± 18.3 cm/sec versus 325.3 ± 58.2 cm/sec (P = .29), 34.3 ± 4.2 mm Hg versus 43.3 ± 15.4 mm Hg (P = .30), and 11 ± 1 mm Hg versus 9.3 ± 2.5 mm Hg (P = .34), respectively. CONCLUSIONS: An ex vivo bicuspid aortic valve model was designed that recapitulated the most common human phenotype with aortic regurgitation. These valves were successfully repaired, validating its potential for evaluating valve hemodynamics and optimizing surgical repair for bicuspid aortic valves.


Asunto(s)
Insuficiencia de la Válvula Aórtica , Enfermedad de la Válvula Aórtica Bicúspide , Procedimientos Quirúrgicos Cardiovasculares , Modelos Anatómicos , Animales , Insuficiencia de la Válvula Aórtica/etiología , Insuficiencia de la Válvula Aórtica/patología , Insuficiencia de la Válvula Aórtica/fisiopatología , Insuficiencia de la Válvula Aórtica/cirugía , Enfermedad de la Válvula Aórtica Bicúspide/patología , Enfermedad de la Válvula Aórtica Bicúspide/fisiopatología , Enfermedad de la Válvula Aórtica Bicúspide/cirugía , Procedimientos Quirúrgicos Cardiovasculares/educación , Procedimientos Quirúrgicos Cardiovasculares/métodos , Bovinos , Ecocardiografía , Hemodinámica , Humanos
10.
J Mech Behav Biomed Mater ; 126: 105074, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35030471

RESUMEN

After myocardial infarction (MI), adult mammals exhibit scar formation, adverse left ventricular (LV) remodeling, LV stiffening, and impaired contractility, ultimately resulting in heart failure. Neonatal mammals, however, are capable of natural heart regeneration after MI. We hypothesized that neonatal cardiac regeneration conserves native biaxial LV mechanics after MI. Wistar rat neonates (1 day old, n = 46) and adults (8-10 weeks old, n = 20) underwent sham surgery or permanent left anterior descending coronary artery ligation. At 6 weeks after neonatal MI, Masson's trichrome staining revealed negligible fibrosis. Echocardiography for the neonatal MI (n = 15) and sham rats (n = 14) revealed no differences in LV wall thickness or chamber diameter, and both groups had normal ejection fraction (72.7% vs 77.5%, respectively, p = 0.1946). Biaxial tensile testing revealed similar stress-strain curves along both the circumferential and longitudinal axes across a full range of physiologic stresses and strains. The circumferential modulus (267.9 kPa vs 274.2 kPa, p = 0.7847), longitudinal modulus (269.3 kPa vs 277.1 kPa, p = 0.7435), and maximum shear stress (3.30 kPa vs 3.95 kPa, p = 0.5418) did not differ significantly between the neonatal MI and sham groups, respectively. In contrast, transmural scars were observed at 4 weeks after adult MI. Adult MI hearts (n = 7) exhibited profound LV wall thinning (p < 0.0001), chamber dilation (p = 0.0246), and LV dysfunction (ejection fraction 45.4% vs 79.7%, p < 0.0001) compared to adult sham hearts (n = 7). Adult MI hearts were significantly stiffer than adult sham hearts in both the circumferential (321.5 kPa vs 180.0 kPa, p = 0.0111) and longitudinal axes (315.4 kPa vs 172.3 kPa, p = 0.0173), and also exhibited greater maximum shear stress (14.87 kPa vs 3.23 kPa, p = 0.0162). Our study is the first to show that native biaxial LV mechanics are conserved after neonatal heart regeneration following MI, thus adding biomechanical support for the therapeutic potential of cardiac regeneration in the treatment of ischemic heart disease.


Asunto(s)
Infarto del Miocardio , Animales , Animales Recién Nacidos , Fenómenos Biomecánicos , Cicatriz/patología , Modelos Animales de Enfermedad , Infarto del Miocardio/patología , Miocardio/patología , Ratas , Ratas Wistar , Remodelación Ventricular
11.
JTCVS Tech ; 10: 244-251, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34977730

RESUMEN

OBJECTIVE: Mitral valve repair is the gold standard treatment for degenerative mitral regurgitation; however, a multitude of repair techniques exist with little quantitative data comparing these approaches. Using a novel ex vivo model, we sought to evaluate biomechanical differences between repair techniques. METHODS: Using porcine mitral valves mounted within a custom 3-dimensional-printed left heart simulator, we induced mitral regurgitation using an isolated P2 prolapse model by cutting primary chordae. Next, we repaired the valves in series using the edge-to-edge technique, neochordoplasty, nonresectional remodeling, and classic leaflet resection. Hemodynamic data and chordae forces were measured and analyzed using an incomplete counterbalanced repeated measures design with the healthy pre-prolapse valve as a control. RESULTS: With the exception of the edge-to-edge technique, all repair methods effectively corrected mitral regurgitation, returning regurgitant fraction to baseline levels (baseline 11.9% ± 3.7%, edge-to-edge 22.5% ± 6.9%, nonresectional remodeling 12.3% ± 3.0%, neochordal 13.4% ± 4.8%, resection 14.7% ± 5.5%, P < 0.01). Forces on the primary chordae were minimized using the neochordal and nonresectional techniques whereas the edge-to-edge and resectional techniques resulted in significantly elevated primary forces. Secondary chordae forces also followed this pattern, with edge-to-edge repair generating significantly higher secondary forces and leaflet resection trending higher than the nonresectional and neochord repairs. CONCLUSIONS: Although multiple methods of degenerative mitral valve repair are used clinically, their biomechanical properties vary significantly. Nonresectional techniques, including leaflet remodeling and neochordal techniques, appear to result in lower chordal forces in this ex vivo technical engineering model.

12.
J Thorac Cardiovasc Surg ; 161(5): 1776-1783, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32249088

RESUMEN

OBJECTIVE: Barlow's disease remains challenging to repair, given the complex valvular morphology and lack of quantitative data to compare techniques. Although there have been recent strides in ex vivo evaluation of cardiac mechanics, to our knowledge, there is no disease model that accurately simulates the morphology and pathophysiology of Barlow's disease. The purpose of this study was to design such a model. METHODS: To simulate Barlow's disease, a cross-species ex vivo model was developed. Bovine mitral valves (n = 4) were sewn into a porcine annulus mount to create excess leaflet tissue and elongated chordae. A heart simulator generated physiologic conditions while hemodynamic data, high-speed videography, and chordal force measurements were collected. The regurgitant valves were repaired using nonresectional repair techniques such as neochord placement. RESULTS: The model successfully imitated the complexities of Barlow's disease, including redundant, billowing bileaflet tissues with notable regurgitation. After repair, hemodynamic data confirmed reduction of mitral leakage volume (25.9 ± 2.9 vs 2.1 ± 1.8 mL, P < .001) and strain gauge analysis revealed lower primary chordae forces (0.51 ± 0.17 vs 0.10 ± 0.05 N, P < .001). In addition, the maximum rate of change of force was significantly lower postrepair for both primary (30.80 ± 11.38 vs 8.59 ± 4.83 N/s, P < .001) and secondary chordae (33.52 ± 10.59 vs 19.07 ± 7.00 N/s, P = .006). CONCLUSIONS: This study provides insight into the biomechanics of Barlow's disease, including sharply fluctuating force profiles experienced by elongated chordae prerepair, as well as restoration of primary chordae forces postrepair. Our disease model facilitates further in-depth analyses to optimize the repair of Barlow's disease.


Asunto(s)
Bioprótesis , Prótesis Valvulares Cardíacas , Prolapso de la Válvula Mitral , Válvula Mitral , Modelos Cardiovasculares , Animales , Fenómenos Biomecánicos/fisiología , Bovinos , Válvula Mitral/fisiopatología , Válvula Mitral/cirugía , Insuficiencia de la Válvula Mitral/cirugía , Prolapso de la Válvula Mitral/fisiopatología , Prolapso de la Válvula Mitral/cirugía , Porcinos
13.
J Cardiovasc Transl Res ; 14(2): 283-289, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32495264

RESUMEN

Although ex vivo simulation is a valuable tool for surgical optimization, a disease model that mimics human aortic regurgitation (AR) from cusp prolapse is needed to accurately examine valve biomechanics. To simulate AR, four porcine aortic valves were explanted, and the commissure between the two largest leaflets was detached and re-implanted 5 mm lower to induce cusp prolapse. Four additional valves were tested in their native state as controls. All valves were tested in a heart simulator while hemodynamics, high-speed videography, and echocardiography data were collected. Our AR model successfully reproduced cusp prolapse with significant increase in regurgitant volume compared with that of the controls (23.2 ± 8.9 versus 2.8 ± 1.6 ml, p = 0.017). Hemodynamics data confirmed the simulation of physiologic disease conditions. Echocardiography and color flow mapping demonstrated the presence of mild to moderate eccentric regurgitation in our AR model. This novel AR model has enormous potential in the evaluation of valve biomechanics and surgical repair techniques. Graphical Abstract.


Asunto(s)
Insuficiencia de la Válvula Aórtica/fisiopatología , Prolapso de la Válvula Aórtica/fisiopatología , Válvula Aórtica/fisiopatología , Hemodinámica , Modelos Cardiovasculares , Animales , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Insuficiencia de la Válvula Aórtica/diagnóstico por imagen , Prolapso de la Válvula Aórtica/diagnóstico por imagen , Fenómenos Biomecánicos , Ecocardiografía Doppler en Color , Diseño de Equipo , Técnicas In Vitro , Impresión Tridimensional , Sus scrofa , Técnicas de Sutura , Transductores de Presión
14.
Tissue Eng Part A ; 27(5-6): 328-335, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32703108

RESUMEN

Cell sheet technology using UpCell™ (Thermo Fisher Scientific, Roskilde, Denmark) plates is a modern tool that enables the rapid creation of single-layered cells without using extracellular matrix (ECM) enzymatic digestion. Although this technique has the advantage of maintaining a sheet of cells without needing artificial scaffolds, these cell sheets remain extremely fragile. Collagen, the most abundant ECM component, is an attractive candidate for modulating tissue mechanical properties given its tunable property. In this study, we demonstrated rapid mechanical property augmentation of human dermal fibroblast cell sheets after incubation with bovine type I collagen for 24 h on UpCell plates. We showed that treatment with collagen resulted in increased collagen I incorporation within the cell sheet without affecting cell morphology, cell type, or cell sheet quality. Atomic force microscopy measurements for controls, and cell sheets that received 50 and 100 µg/mL collagen I treatments revealed an average Young's modulus of their respective intercellular regions: 6.6 ± 1.0, 14.4 ± 6.6, and 19.8 ± 3.8 kPa during the loading condition, and 10.3 ± 4.7, 11.7 ± 2.2, and 18.1 ± 3.4 kPa during the unloading condition. This methodology of rapid mechanical property augmentation of a cell sheet has a potential impact on cell sheet technology by improving the ease of construct manipulation, enabling new translational tissue engineering applications.


Asunto(s)
Colágeno , Ingeniería de Tejidos , Animales , Bovinos , Módulo de Elasticidad , Matriz Extracelular , Fibroblastos , Humanos
15.
Eur J Cardiothorac Surg ; 57(3): 535-544, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31638697

RESUMEN

OBJECTIVES: Posterior ventricular anchoring neochordal (PVAN) repair is a non-resectional technique for correcting mitral regurgitation (MR) due to posterior leaflet prolapse, utilizing a single suture anchored in the myocardium behind the leaflet. This technique has demonstrated clinical efficacy, although a theoretical limitation is stability of the anchoring suture. We hypothesize that the PVAN suture positions the leaflet for coaptation, after which forces are distributed evenly with low repair suture forces. METHODS: Porcine mitral valves were mounted in a 3-dimensional-printed heart simulator and chordal forces, haemodynamics and echocardiography were collected at baseline, after inducing MR by severing chordae, and after PVAN repair. Repair suture forces were measured with a force-sensing post positioned to mimic in vivo suture placement. Forces required to pull the myocardial suture free were also determined. RESULTS: Relative primary and secondary chordae forces on both leaflets were elevated during prolapse (P < 0.05). PVAN repair eliminated MR in all valves and normalized chordae forces to baseline levels on anterior primary (0.37 ± 0.23 to 0.22 ± 0.09 N, P < 0.05), posterior primary (0.62 ± 0.37 to 0.14 ± 0.05 N, P = 0.001), anterior secondary (1.48 ± 0.52 to 0.85 ± 0.43 N, P < 0.001) and posterior secondary chordae (1.42 ± 0.69 to 0.59 ± 0.17 N, P = 0.005). Repair suture forces were minimal, even compared to normal primary chordae forces (0.08 ± 0.04 vs 0.19 ± 0.08 N, P = 0.002), and were 90 times smaller than maximum forces tolerated by the myocardium (0.08 ± 0.04 vs 6.9 ± 1.3 N, P < 0.001). DISCUSSION: PVAN repair eliminates MR by positioning the posterior leaflet for coaptation, distributing forces throughout the valve. Given extremely low measured forces, the strength of the repair suture and the myocardium is not a limitation.


Asunto(s)
Insuficiencia de la Válvula Mitral , Prolapso de la Válvula Mitral , Animales , Cuerdas Tendinosas/diagnóstico por imagen , Cuerdas Tendinosas/cirugía , Hemodinámica , Válvula Mitral/diagnóstico por imagen , Válvula Mitral/cirugía , Insuficiencia de la Válvula Mitral/cirugía , Prolapso de la Válvula Mitral/diagnóstico por imagen , Prolapso de la Válvula Mitral/cirugía , Porcinos
16.
Med Eng Phys ; 77: 10-18, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32008935

RESUMEN

Mitral regurgitation (MR) due to annular dilation occurs in a variety of mitral valve diseases and is observed in many patients with heart failure due to mitral regurgitation. To understand the biomechanics of MR and ultimately design an optimized annuloplasty ring, a representative disease model with asymmetric dilation of the mitral annulus is needed. This work shows the design and implementation of a 3D-printed valve dilation device to preferentially dilate the posterior mitral valve annulus. Porcine mitral valves (n = 3) were sewn into the device and mounted within a left heart simulator that generates physiologic pressures and flows through the valves, while chordal forces were measured. The valves were incrementally dilated, inducing MR, while hemodynamic and force data were collected. Flow analysis demonstrated that MR increased linearly with respect to percent annular dilation when dilation was greater than a 25.6% dilation threshold (p < 0.01). Pre-threshold, dilation did not cause significant increases in regurgitant fraction. Forces on the chordae tendineae increased as dilation increased prior to the identified threshold (p < 0.01); post-threshold, the MR resulted in highly variable forces. Ultimately, this novel dilation device can be used to more accurately model a wide range of MR disease states and their corresponding repair techniques using ex vivo experimentation. In particular, this annular dilation device provides the means to investigate the design and optimization of novel annuloplasty rings.


Asunto(s)
Dilatación/instrumentación , Insuficiencia de la Válvula Mitral/terapia , Impresión Tridimensional , Animales , Diseño de Equipo , Hemodinámica , Insuficiencia de la Válvula Mitral/fisiopatología , Porcinos
17.
J R Soc Interface ; 17(173): 20200614, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33259750

RESUMEN

Papillary muscles serve as attachment points for chordae tendineae which anchor and position mitral valve leaflets for proper coaptation. As the ventricle contracts, the papillary muscles translate and rotate, impacting chordae and leaflet kinematics; this motion can be significantly affected in a diseased heart. In ex vivo heart simulation, an explanted valve is subjected to physiologic conditions and can be adapted to mimic a disease state, thus providing a valuable tool to quantitatively analyse biomechanics and optimize surgical valve repair. However, without the inclusion of papillary muscle motion, current simulators are limited in their ability to accurately replicate cardiac biomechanics. We developed and implemented image-guided papillary muscle (IPM) robots to mimic the precise motion of papillary muscles. The IPM robotic system was designed with six degrees of freedom to fully capture the native motion. Mathematical analysis was used to avoid singularity conditions, and a supercomputing cluster enabled the calculation of the system's reachable workspace. The IPM robots were implemented in our heart simulator with motion prescribed by high-resolution human computed tomography images, revealing that papillary muscle motion significantly impacts the chordae force profile. Our IPM robotic system represents a significant advancement for ex vivo simulation, enabling more reliable cardiac simulations and repair optimizations.


Asunto(s)
Insuficiencia de la Válvula Mitral , Robótica , Biomimética , Cuerdas Tendinosas , Humanos , Músculos Papilares
18.
Cells ; 9(1)2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963369

RESUMEN

Newborn mice and piglets exhibit natural heart regeneration after myocardial infarction (MI). Discovering other mammals with this ability would provide evidence that neonatal cardiac regeneration after MI may be a conserved phenotype, which if activated in adults could open new options for treating ischemic cardiomyopathy in humans. Here, we hypothesized that newborn rats undergo natural heart regeneration after MI. Using a neonatal rat MI model, we performed left anterior descending coronary artery ligation or sham surgery in one-day-old rats under hypothermic circulatory arrest (n = 74). Operative survival was 97.3%. At 1 day post-surgery, rats in the MI group exhibited significantly reduced ejection fraction (EF) compared to shams (87.1% vs. 53.0%, p < 0.0001). At 3 weeks post-surgery, rats in the sham and MI groups demonstrated no difference in EF (71.1% vs. 69.2%, respectively, p = 0.2511), left ventricular wall thickness (p = 0.9458), or chamber diameter (p = 0.7801). Masson's trichome and picrosirius red staining revealed minimal collagen scar after MI. Increased numbers of cardiomyocytes positive for 5-ethynyl-2'-deoxyuridine (p = 0.0072), Ki-67 (p = 0.0340), and aurora B kinase (p = 0.0430) were observed within the peri-infarct region after MI, indicating ischemia-induced cardiomyocyte proliferation. Overall, we present a neonatal rat MI model and demonstrate that newborn rats are capable of endogenous neocardiomyogenesis after MI.


Asunto(s)
Infarto del Miocardio/fisiopatología , Regeneración , Animales , Animales Recién Nacidos , Aurora Quinasa B/metabolismo , Proliferación Celular , Cicatriz/patología , Colágeno/metabolismo , Modelos Animales de Enfermedad , Electrocardiografía , Femenino , Fibrosis , Antígeno Ki-67/metabolismo , Ligadura , Masculino , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Infarto del Miocardio/cirugía , Miocitos Cardíacos/patología , Ratas Wistar , Factores de Tiempo , Troponina/metabolismo
19.
Microb Biotechnol ; 13(6): 1780-1792, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32476224

RESUMEN

The cyanobacterium Synechococcus elongatus (SE) has been shown to rescue ischaemic heart muscle after myocardial infarction by photosynthetic oxygen production. Here, we investigated SE toxicity and hypothesized that systemic SE exposure does not elicit a significant immune response in rats. Wistar rats intravenously received SE (n = 12), sterile saline (n = 12) or E. coli lipopolysaccharide (LPS, n = 4), and a subset (8 SE, 8 saline) received a repeat injection 4 weeks later. At baseline, 4 h, 24 h, 48 h, 8 days and 4 weeks after injection, clinical assessments, blood cultures, blood counts, lymphocyte phenotypes, liver function tests, proinflammatory cytokines and immunoglobulins were assessed. Across all metrics, SE rats responded comparably to saline controls, displaying no clinically significant immune response. As expected, LPS rats exhibited severe immunological responses. Systemic SE administration does not induce sepsis or toxicity in rats, thereby supporting the safety of cyanobacteria-mammalian symbiotic therapeutics using this organism.


Asunto(s)
Escherichia coli , Synechococcus , Animales , Fotosíntesis , Ratas , Ratas Wistar
20.
Sci Rep ; 10(1): 7319, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32355240

RESUMEN

Neonatal mice exhibit natural heart regeneration after myocardial infarction (MI) on postnatal day 1 (P1), but this ability is lost by postnatal day 7 (P7). Cardiac biomechanics intricately affect long-term heart function, but whether regenerated cardiac muscle is biomechanically similar to native myocardium remains unknown. We hypothesized that neonatal heart regeneration preserves native left ventricular (LV) biomechanical properties after MI. C57BL/6J mice underwent sham surgery or left anterior descending coronary artery ligation at age P1 or P7. Echocardiography performed 4 weeks post-MI showed that P1 MI and sham mice (n = 22, each) had similar LV wall thickness, diameter, and ejection fraction (59.6% vs 60.7%, p = 0.6514). Compared to P7 shams (n = 20), P7 MI mice (n = 20) had significant LV wall thinning, chamber enlargement, and depressed ejection fraction (32.6% vs 61.8%, p < 0.0001). Afterward, the LV was explanted and pressurized ex vivo, and the multiaxial lenticular stress-strain relationship was tracked. While LV tissue modulus for P1 MI and sham mice were similar (341.9 kPa vs 363.4 kPa, p = 0.6140), the modulus for P7 MI mice was significantly greater than that for P7 shams (691.6 kPa vs 429.2 kPa, p = 0.0194). We conclude that, in neonatal mice, regenerated LV muscle has similar biomechanical properties as native LV myocardium.


Asunto(s)
Ventrículos Cardíacos/fisiopatología , Corazón/fisiología , Infarto del Miocardio/patología , Miocardio/patología , Regeneración , Animales , Animales Recién Nacidos , Fenómenos Biomecánicos , Proliferación Celular , Colágeno/química , Ecocardiografía , Femenino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/citología , Estrés Mecánico , Remodelación Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA