RESUMEN
BACKGROUND: Diarrhoeal diseases cause illness and death among children younger than 5 years in low-income countries. We designed the Global Enteric Multicenter Study (GEMS) to identify the aetiology and population-based burden of paediatric diarrhoeal disease in sub-Saharan Africa and south Asia. METHODS: The GEMS is a 3-year, prospective, age-stratified, matched case-control study of moderate-to-severe diarrhoea in children aged 0-59 months residing in censused populations at four sites in Africa and three in Asia. We recruited children with moderate-to-severe diarrhoea seeking care at health centres along with one to three randomly selected matched community control children without diarrhoea. From patients with moderate-to-severe diarrhoea and controls, we obtained clinical and epidemiological data, anthropometric measurements, and a faecal sample to identify enteropathogens at enrolment; one follow-up home visit was made about 60 days later to ascertain vital status, clinical outcome, and interval growth. FINDINGS: We enrolled 9439 children with moderate-to-severe diarrhoea and 13,129 control children without diarrhoea. By analysing adjusted population attributable fractions, most attributable cases of moderate-to-severe diarrhoea were due to four pathogens: rotavirus, Cryptosporidium, enterotoxigenic Escherichia coli producing heat-stable toxin (ST-ETEC; with or without co-expression of heat-labile enterotoxin), and Shigella. Other pathogens were important in selected sites (eg, Aeromonas, Vibrio cholerae O1, Campylobacter jejuni). Odds of dying during follow-up were 8·5-fold higher in patients with moderate-to-severe diarrhoea than in controls (odd ratio 8·5, 95% CI 5·8-12·5, p<0·0001); most deaths (167 [87·9%]) occurred during the first 2 years of life. Pathogens associated with increased risk of case death were ST-ETEC (hazard ratio [HR] 1·9; 0·99-3·5) and typical enteropathogenic E coli (HR 2·6; 1·6-4·1) in infants aged 0-11 months, and Cryptosporidium (HR 2·3; 1·3-4·3) in toddlers aged 12-23 months. INTERPRETATION: Interventions targeting five pathogens (rotavirus, Shigella, ST-ETEC, Cryptosporidium, typical enteropathogenic E coli) can substantially reduce the burden of moderate-to-severe diarrhoea. New methods and accelerated implementation of existing interventions (rotavirus vaccine and zinc) are needed to prevent disease and improve outcomes. FUNDING: The Bill & Melinda Gates Foundation.
Asunto(s)
Infecciones Bacterianas/mortalidad , Diarrea/microbiología , Diarrea/mortalidad , Infecciones por Rotavirus/mortalidad , África del Sur del Sahara , Asia Occidental/epidemiología , Estudios de Casos y Controles , Preescolar , Costo de Enfermedad , Países en Desarrollo , Diarrea Infantil/microbiología , Diarrea Infantil/mortalidad , Femenino , Humanos , Lactante , Masculino , Estudios ProspectivosRESUMEN
BACKGROUNDThe use of high-throughput technologies has enabled rapid advancement in the knowledge of host immune responses to pathogens. Our objective was to compare the repertoire, protection, and maternal factors associated with human milk antibodies to infectious pathogens in different economic and geographic locations.METHODSUsing multipathogen protein microarrays, 878 milk and 94 paired serum samples collected from 695 women in 5 high and low-to-middle income countries (Bangladesh, Finland, Peru, Pakistan, and the United States) were assessed for specific IgA and IgG antibodies to 1,607 proteins from 30 enteric, respiratory, and bloodborne pathogens.RESULTSThe antibody coverage across enteric and respiratory pathogens was highest in Bangladeshi and Pakistani cohorts and lowest in the U.S. and Finland. While some pathogens induced a dominant IgA response (Campylobacter, Klebsiella, Acinetobacter, Cryptosporidium, and pertussis), others elicited both IgA and IgG antibodies in milk and serum, possibly related to the invasiveness of the infection (Shigella, enteropathogenic E. coli "EPEC", Streptococcus pneumoniae, Staphylococcus aureus, and Group B Streptococcus). Besides the differences between economic regions and decreases in concentrations over time, human milk IgA and IgG antibody concentrations were lower in mothers with high BMI and higher parity, respectively. In Bangladeshi infants, a higher specific IgA concentration in human milk was associated with delayed time to rotavirus infection, implying protective properties of antirotavirus antibodies, whereas a higher IgA antibody concentration was associated with greater incidence of Campylobacter infection.CONCLUSIONThis comprehensive assessment of human milk antibody profiles may be used to guide the development of passive protection strategies against infant morbidity and mortality.FUNDINGBill and Melinda Gates Foundation grant OPP1172222 (to KMJ); Bill and Melinda Gates Foundation grant OPP1066764 funded the MDIG trial (to DER); University of Rochester CTSI and Environmental Health Sciences Center funded the Rochester Lifestyle study (to RJL); and R01 AI043596 funded PROVIDE (to WAP).