Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Chem Res Toxicol ; 28(10): 2034-44, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26395423

RESUMEN

There are species-related differences in the toxicity of pyrrolizidine alkaloids (PAs) partly attributable to the hepatic metabolism of these alkaloids. In this study, the metabolism of lasiocarpine, a potent hepatotoxic and carcinogenic food contaminant, was examined in vitro with human, pig, rat, mouse, rabbit, and sheep liver microsomes. A total of 12 metabolites (M1-M12) were detected with the human liver microsomes, of which M1, M2, M4, and M6 were unstable in the presence of reduced glutathione (GSH). With the exception of M3 and M8, the formation of all metabolites of lasiocarpine was catalyzed by CYP3A4 in humans. Tandem mass spectra (MS/MS) detected several new metabolites, termed M4-M7; their toxicological significance is unknown. M9 (m/z 398), identified as a demethylation product, was the main metabolite in all species, although the relative dominance of this metabolite was lower in humans. The level of the reactive metabolites, as measured by M1 ((3H-pyrrolizin-7-yl)methanol) and the GSH conjugate, was higher with the liver microsomes of susceptible species (human, pig, rat, and mouse) than with the species (rabbit and sheep) resistant to PA intoxication. In general, in addition to the new metabolites (M4-M7) that could make humans more susceptible to lasiocarpine-induced toxicity, the overall metabolite fingerprint detected with the human liver microsomes differed from that of all other species, yielding high levels of GSH-reactive metabolites.


Asunto(s)
Hígado/metabolismo , Alcaloides de Pirrolicidina/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Citocromo P-450 CYP3A/metabolismo , Glutatión/química , Glutatión/metabolismo , Humanos , Hígado/efectos de los fármacos , Ratones , Microsomas Hepáticos/metabolismo , Alcaloides de Pirrolicidina/química , Alcaloides de Pirrolicidina/toxicidad , Conejos , Ratas , Ovinos , Especificidad de la Especie , Porcinos , Espectrometría de Masas en Tándem
2.
Chem Res Toxicol ; 28(4): 702-10, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25651456

RESUMEN

In humans, the metabolic bioactivation of pyrrolizidine alkaloids (PAs) is mediated mainly by cytochrome P450 3A4 (CYP3A4) via the hydroxylation of their necine bases at C3 or C8 of heliotridine- and retronecine-type PAs or at the N atom of the methyl substituent of otonecine-type PAs. However, no attempts have been made to identify which C atom is the most favorable site for hydroxylation in silico. Here, in order to determine the site of hydroxylation that eventually leads to the formation of the toxic metabolites produced from lasiocarpine, retrorsine, and senkirkin, we utilized the ligand-based electrophilic Fukui function f(-)(r) and hydrogen-bond dissociation energies (BDEs) as well as structure-based molecular docking. The ligand-based computations revealed that the C3 and C8 atoms of lasiocarpine and retrorsine and the C26 atom of senkirkin were chemically the most susceptible locations for electrophilic oxidizing reactions. Similarly, according to the predicted binding orientation in the active site of the crystal structure of human CYP3A4 (PDB code: 4I4G ), the alkaloids were positioned in such a way that the C3 atom of lasiocarpine and retrorsine and the C26 of senkirkin were closest to the catalytic heme Fe. Thus, it is concluded that the C3 atom of lasiocarpine and retrorsine and C26 of senkirkin are the most favored sites of hydroxylation that lead to the production of their toxic metabolites.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Alcaloides de Pirrolicidina/toxicidad , Simulación por Computador , Humanos , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Modelos Moleculares , Oxidación-Reducción , Alcaloides de Pirrolicidina/metabolismo , Termodinámica
3.
Chem Res Toxicol ; 27(11): 1950-7, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25295702

RESUMEN

Pyrrolizidine alkaloids (PAs) such as retrorsine are common food contaminants that are known to be bioactivated by cytochrome P450 enzymes to putative hepatotoxic, genotoxic, and carcinogenic metabolites known as dehydropyrrolizidine alkaloids (DHPs). We compared how both electrochemical (EC) and human liver microsomal (HLM) oxidation of retrorsine could produce short-lived intermediate metabolites; we also characterized a toxicologically important metabolite, (3H-pyrrolizin-7-yl)methanol. The EC cell was coupled online or offline to a liquid chromatograph/mass spectrometer (LC/MS), whereas the HLM oxidation was performed in 100 mM potassium phosphate (pH 7.4) in the presence of NADPH at 37 °C. The EC cell oxidation of retrorsine produced 12 metabolites, including dehydroretrorsine (m/z 350, [M + H(+)]), which was degraded to a new reactive metabolite at m/z 136 ([M + H(+)]). The molecular structure of this small metabolite was determined using high-resolution mass spectrometry and NMR spectroscopy followed by chemical synthesis. In addition, we also identified another minor but reactive metabolite at m/z 136, an isomer of (3H-pyrrolizin-7-yl)methanol. Both (3H-pyrrolizin-7-yl)methanol and its minor isomer were also observed after HLM oxidation of retrorsine and other hepatotoxic PAs such as lasiocarpine and senkirkin. In the presence of reduced glutathione (GSH), each isomer formed identical GSH conjugates at m/z 441 and m/z 730 in the negative ESI-MS. Because (3H-pyrrolizine-7-yl)methanol) and its minor isomer subsequently reacted with GSH, it is concluded that (3H-pyrrolizin-7-yl)methanol may be a common toxic metabolite arising from PAs.


Asunto(s)
Microsomas Hepáticos/efectos de los fármacos , Alcaloides de Pirrolicidina/metabolismo , Biotransformación , Cromatografía Líquida de Alta Presión , Técnicas Electroquímicas , Técnicas In Vitro , Espectroscopía de Resonancia Magnética , Microsomas Hepáticos/metabolismo , Estructura Molecular , Oxidación-Reducción , Alcaloides de Pirrolicidina/química , Alcaloides de Pirrolicidina/toxicidad , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
4.
Clin Pharmacol Ther ; 115(3): 556-564, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38093631

RESUMEN

In pre-eclampsia models, nicotinamide (NAM) has protective effects in pre-eclampsia and is being evaluated as a therapeutic nutraceutical in clinical studies. NAM undergoes extensive hepatic metabolism by NAM N-methyltransferase to methylnicotinamide (MNA), which is subsequently metabolized to methyl-2-pyridone-5-carboxamide (M2PY) by aldehyde oxidase. However, the pharmacokinetics of NAM and its major metabolites has never been studied in pregnant individuals. Blood samples were collected before and 1, 2, 4, 8, and 24 hours after single 1 g oral NAM dose in healthy pregnant (gestational age 24-33 weeks) and nonpregnant female volunteers (n = 6/group). Pooled urine was collected from 0 to 8 hours. NAM, MNA, and M2PY area under the concentration-time curve (AUC) data were analyzed by noncompartmental analysis. No difference in the plasma AUC0→24 of NAM (median (25%-75%): 463 (436-576) vs. 510 (423, 725) µM*hour, P = 0.430) and its intermediate metabolite MNA (89.1 (60.4, 124.4) vs. 83.8 (62.7, 93.7) µM*hour, P = 0.515) was observed in pregnant and nonpregnant volunteers, respectively; however, the terminal metabolite M2PY AUC0 → 24 was significantly lower in pregnant individuals (218 (188, 254) vs. 597 (460, 653) µM*hour, P < 0.001). NAM renal clearance (CLR ; P = 0.184), MNA CLR (P = 0.180), and total metabolite formation clearance (P = 0.405) did not differ across groups; however, M2PY CLR was significantly higher in pregnant individuals (10.5 (9.3-11.3) vs. 7.5 (6.4-8.5) L/h, P = 0.002). These findings demonstrate that the PK of NAM and systemic exposure to its intermediate metabolite MNA are not significantly altered during pregnancy, and systemic exposure to NAM's major metabolite M2PY was reduced during pregnancy due to increased renal elimination.


Asunto(s)
Niacinamida , Preeclampsia , Embarazo , Humanos , Femenino , Lactante
5.
Front Pharmacol ; 14: 1218703, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37475714

RESUMEN

Introduction: Pregnancy increases the clearance of CYP3A4 substrate drugs and pregnancy-related hormones (PRHs) induce hepatic CYP3A4 expression and metabolism. However, it remains unclear to what extent the magnitude of PRH-evoked changes in hepatic CYP3A metabolism varies across multiple substrates. This study quantified the impact of PRHs on CYP3A protein concentrations and buprenorphine metabolism in human hepatocytes, and compared the magnitude of these effects to nifedipine and midazolam metabolism. Methods: Sandwich-cultured human hepatocytes (SCHH) from female donors were exposed to PRHs, administered in combination across a range of physiologically relevant concentrations, for 72 h. Absolute protein concentrations of CYP3A4, CYP3A5, and CYP3A7 in SCHH membrane fractions were quantified by nanoLC-MS/MS, and norbuprenorphine (nor-BUP), dehydro-nifedipine (dehydro-NIF), and 1-hydroxy-midazolam (1-OH-MDZ) formation was evaluated. Results: Compared to control, PRH exposure increased CYP3A4, CYP3A7, and total CYP3A protein concentrations, but not CYP3A5 concentrations, and increased nor-BUP, dehydro-NIF, and 1-OH-MDZ formation in a concentration-dependent manner. The formation of nor-BUP, dehydro-NIF, and 1-OH-MDZ each positively correlated with PRH-mediated changes in total CYP3A protein concentrations. The PRH-evoked increase in nor-BUP formation was evident in all donors; however, the PRH induction of dehydro-NIF and 1-OH-MDZ formation was diminished in a hepatocyte donor with high basal CYP3A5 expression. Discussion: These findings demonstrate that PRHs increase buprenorphine, nifedipine, and midazolam metabolism in SCHH via induction of CYP3A4 and total CYP3A protein concentrations, and the magnitude of these effects vary across hepatocyte donors in a substrate-specific manner. These data provide insight into the contribution of PRH induction of CYP3A4 metabolism to increased buprenorphine clearance during pregnancy.

6.
Front Pharmacol ; 13: 1004010, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36210832

RESUMEN

Pregnancy alters the disposition and exposure to multiple drugs indicated for pregnancy-related complications. Previous in vitro studies have shown that pregnancy-related hormones (PRHs) alter the expression and function of certain cytochrome P450s (CYPs) in human hepatocytes. However, the impact of PRHs on hepatic concentrations of non-CYP drug-metabolizing enzymes (DMEs) and transport proteins remain largely unknown. In this study, sandwich-cultured human hepatocytes (SCHH) from five female donors were exposed to vehicle or PRHs (estrone, estradiol, estriol, progesterone, cortisol, and placental growth hormone), administered individually or in combination, across a range of physiologically relevant PRH concentrations for 72 h. Absolute concentrations of 33 hepatic non-CYP DMEs and transport proteins were quantified in SCHH membrane fractions using a quantitative targeted absolute proteomics (QTAP) isotope dilution nanoLC-MS/MS method. The data revealed that PRHs altered the absolute protein concentration of various DMEs and transporters in a concentration-, isoform-, and hepatocyte donor-dependent manner. Overall, eight of 33 (24%) proteins exhibited a significant PRH-evoked net change in absolute protein concentration relative to vehicle control (ANOVA p < 0.05) across hepatocyte donors: 1/11 UGTs (9%; UGT1A4), 4/6 other DMEs (67%; CES1, CES2, FMO5, POR), and 3/16 transport proteins (19%; OAT2, OCT3, P-GP). An additional 8 (24%) proteins (UGT1A1, UGT2B4, UGT2B10, FMO3, OCT1, MRP2, MRP3, ENT1) exhibited significant PRH alterations in absolute protein concentration within at least two individual hepatocyte donors. In contrast, 17 (52%) proteins exhibited no discernable impact by PRHs either within or across hepatocyte donors. Collectively, these results provide the first comprehensive quantitative proteomic evaluation of PRH effects on non-CYP DMEs and transport proteins in SCHH and offer mechanistic insight into the altered disposition of drug substrates cleared by these pathways during pregnancy.

7.
Expert Opin Drug Metab Toxicol ; 17(11): 1261-1279, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34739303

RESUMEN

INTRODUCTION: Hypertensive disorders of pregnancy (HDP) are rising in prevalence, and increase risk of adverse maternal and fetal outcomes. Physiologic changes occur during pregnancy that alter drug pharmacokinetics. However, antihypertensive drugs lack pregnancy-specific dosing recommendations due to critical knowledge gaps surrounding the extent of gestational changes in antihypertensive drug pharmacokinetics and underlying mechanisms. AREAS COVERED: This review (1) summarizes currently recommended medications and dosing strategies for non-emergent HDP treatment, (2) reviews and synthesizes existing literature identified via a comprehensive PubMed search evaluating gestational changes in the maternal pharmacokinetics of commonly prescribed HDP drugs (notably labetalol and nifedipine), and (3) offers insight into the metabolism and clearance mechanisms underlying altered HDP drug pharmacokinetics during pregnancy. Remaining knowledge gaps and future research directions are summarized. EXPERT OPINION: A series of small pharmacokinetic studies illustrate higher oral clearance of labetalol and nifedipine during pregnancy. Pharmacokinetic modeling and preclinical studies suggest these effects are likely due to pregnancy-associated increases in hepatic UGT1A1- and CYP3A4-mediated first-pass metabolism and lower bioavailability. Accordingly, higher and/or more frequent doses may be needed to lower blood pressure during pregnancy. Future research is needed to address various evidence gaps and inform the development of more precise antihypertensive drug dosing strategies.


Asunto(s)
Antihipertensivos , Hipertensión Inducida en el Embarazo , Labetalol , Preparaciones Farmacéuticas , Femenino , Humanos , Hipertensión Inducida en el Embarazo/tratamiento farmacológico , Nifedipino , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA