Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38138584

RESUMEN

Chronic lymphocytic leukaemia (CLL) is a malignancy of the immune B lymphocyte cells and is the most common leukaemia diagnosed in developed countries. In this paper, we report the synthesis and antiproliferative effects of a series of (E)-9-(2-nitrovinyl)anthracenes and related nitrostyrene compounds in CLL cell lines and also in Burkitt's lymphoma (BL) cell lines, a rare form of non-Hodgkin's immune B-cell lymphoma. The nitrostyrene scaffold was identified as a lead structure for the development of effective compounds targeting BL and CLL. The series of structurally diverse nitrostyrenes was synthesised via Henry-Knoevenagel condensation reactions. Single-crystal X-ray analysis confirmed the structure of (E)-9-chloro-10-(2-nitrobut-1-en-1-yl)anthracene (19f) and the related 4-(anthracen-9-yl)-1H-1,2,3-triazole (30a). The (E)-9-(2-nitrovinyl)anthracenes 19a, 19g and 19i-19m were found to elicit potent antiproliferative effects in both BL cell lines EBV-MUTU-1 (chemosensitive) and EBV+ DG-75 (chemoresistant) with >90% inhibition at 10 µM. Selected (E)-9-(2-nitrovinyl)anthracenes demonstrated potent antiproliferative activity in CLL cell lines, with IC50 values of 0.17 µM (HG-3) and 1.3 µM (PGA-1) for compound 19g. The pro-apoptotic effects of the most potent compounds 19a, 19g, 19i, 19l and 19m were demonstrated in both CLL cell lines HG-3 and PGA-1. The (E)-nitrostyrene and (E)-9-(2-nitrovinyl)anthracene series of compounds offer potential for further development as novel chemotherapeutics for CLL.


Asunto(s)
Linfoma de Burkitt , Leucemia Linfocítica Crónica de Células B , Humanos , Linfoma de Burkitt/tratamiento farmacológico , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/patología , Linfocitos B/metabolismo , Línea Celular , Antracenos
2.
Molecules ; 25(18)2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32899566

RESUMEN

Based on the use of s-triazine as a scaffold, we report here a new series of s-triazine Schiff base derivatives and their anti-proliferative activity against two cancer cell lines: human breast carcinoma (MCF-7), and colon cancer (HCT-116) compared with tamoxifen as a reference compound. Several derivatives exhibited growth inhibition activity in the sub-micromolar range. The results reveal that the s-triazine Schiff base derivatives showed varied activities and that the substituents on the s-triazine core have a great effect on the anti-proliferative activity. Compounds with a piperidino and benzylamino substituent on the s-triazine moiety 4b and 4c were most effective in both cell lines compared to the reference compound used. In addition, compound 4b has a para chlorine atom on the benzylidine residue, demonstrating the most potent activity with IC50 values of 3.29 and 3.64 µM in MCF-7 and HCT-116, respectively. These results indicate that in general, the nature of the substituents on the triazine core and the type of substituent on the benzilyldene ring significantly influenced the anti-proliferative activity. The results obtained from the anti-proliferative activity and the molecular docking study indicate that s-triazine-hydrazone derivatives may be an excellent scaffold for the development of new anti-cancer agents.


Asunto(s)
Simulación del Acoplamiento Molecular , Bases de Schiff/síntesis química , Bases de Schiff/farmacología , Triazinas/síntesis química , Triazinas/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células HCT116 , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Bases de Schiff/química , Triazinas/química
3.
Org Biomol Chem ; 17(25): 6184-6200, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31173031

RESUMEN

Microtubules are a validated clinical target for the treatment of many cancers. We describe the design, synthesis, biochemical evaluation, and molecular modelling studies of a series of analogues of the microtubule-destabilising agent, combretastatin A-4 (CA-4). Our series of 33 novel compounds contain the CA-4 core structure with modifications to the stilbene linking group, and are predominantly piperazine derivatives. Synthesis was achieved in a two-step process by firstly obtaining the acrylic acid via a Perkin reaction using microwave enhanced synthesis, followed by coupling using either DCC or Mukaiyama's reagent. All target compounds were screened for antiproliferative activity in MCF-7 breast cancer cells. Hydroxyl derivative (E)-3-(4-hydroxy-3-methoxyphenyl)-1-(4-phenylpiperazin-1-yl)-2-(3,4,5-trimethoxyphenyl) propenone (4m) displayed potent antiproliferative activity (IC50 = 190 nM). Two amino-containing derivatives, (E)-3-(3-amino-4-methoxyphenyl)-1-(4-phenylpiperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (4q) and (E)-3-(3-amino-4-methoxyphenyl)-1-(4-(p-tolyl)piperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (4x), were the most potent with IC50 values of 130 nM and 83 nM respectively. Representative compounds were shown to depolymerise tubulin, induce G2/M arrest and apoptosis in MCF-7 cells but not peripheral blood mononuclear cells, and induce cleavage of the DNA repair enzyme poly ADP ribose polymerase (PARP) in MCF-7 cells. Modelling studies predict that the compounds bind to tubulin within the colchicine-binding site. These compounds are a valuable addition to the library of CA-4 analogues and 4m, 4q and 4x will be developed further as novel, water-soluble molecules targeting microtubules.


Asunto(s)
Antineoplásicos/farmacología , Piperazinas/farmacología , Estilbenos/farmacología , Moduladores de Tubulina/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Sitios de Unión , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , Piperazinas/síntesis química , Piperazinas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica , Estilbenos/síntesis química , Estilbenos/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/metabolismo
4.
Molecules ; 22(9)2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28858267

RESUMEN

Nuclear receptors such as the estrogen receptors (ERα and ERß) modulate the effects of the estrogen hormones and are important targets for design of innovative chemotherapeutic agents for diseases such as breast cancer and osteoporosis. Conjugate and bifunctional compounds which incorporate an ER ligand offer a useful method of delivering cytotoxic drugs to tissue sites such as breast cancers which express ERs. A series of novel conjugate molecules incorporating both the ER ligands endoxifen and cyclofenil-endoxifen hybrids covalently linked to the antimitotic and tubulin targeting agent combretastatin A-4 were synthesised and evaluated as ER ligands. A number of these compounds demonstrated pro-apoptotic effects, with potent antiproliferative activity in ER-positive MCF-7 breast cancer cell lines and low cytotoxicity. These conjugates displayed binding affinity towards ERα and ERß isoforms at nanomolar concentrations e.g., the cyclofenil-amide compound 13e is a promising lead compound of a clinically relevant ER conjugate with IC50 in MCF-7 cells of 187 nM, and binding affinity to ERα (IC50 = 19 nM) and ERß (IC50 = 229 nM) while the endoxifen conjugate 16b demonstrates antiproliferative activity in MCF-7 cells (IC50 = 5.7 nM) and binding affinity to ERα (IC50 = 15 nM) and ERß (IC50 = 115 nM). The ER binding effects are rationalised in a molecular modelling study in which the disruption of the ER helix-12 in the presence of compounds 11e, 13e and 16b is presented These conjugate compounds have potential application for further development as antineoplastic agents in the treatment of ER positive breast cancers.


Asunto(s)
Antineoplásicos Fitogénicos/síntesis química , Bibencilos/síntesis química , Ciclofenil/análogos & derivados , Ciclofenil/síntesis química , Tamoxifeno/análogos & derivados , Antineoplásicos Fitogénicos/metabolismo , Antineoplásicos Fitogénicos/farmacología , Bibencilos/metabolismo , Bibencilos/farmacología , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Ciclofenil/metabolismo , Ciclofenil/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Leucocitos Mononucleares/efectos de los fármacos , Ligandos , Células MCF-7 , Modelos Moleculares , Conformación Molecular , Unión Proteica , Receptores de Estrógenos/metabolismo , Tamoxifeno/síntesis química , Tamoxifeno/metabolismo , Tamoxifeno/farmacología
5.
Bioorg Med Chem ; 24(18): 4075-4099, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27407030

RESUMEN

Breast cancer is the second most common cancer worldwide after lung cancer with the vast majority of early stage breast cancers being hormone-dependent. One of the major therapeutic advances in the clinical treatment of breast cancer has been the introduction of selective estrogen receptor modulators (SERMs). We describe the design and synthesis of novel SERM type ligands based on the 2-arylindole scaffold to selectively target the estrogen receptor in hormone dependent breast cancers. Some of these novel compounds are designed as bisindole type structures, while others are conjugated to a cytotoxic agent based on combretastatin A4 (CA4) which is a potent inhibitor of tubulin polymerisation. The indole compounds synthesised within this project such as 31 and 86 demonstrate estrogen receptor (ER) binding and strong antiproliferative activity in the ER positive MCF-7 breast cancer cell line with IC50 values of 2.71µM and 1.86µM respectively. These active compounds induce apoptotic activity in MCF-7 cells with minimal effects on normal peripheral blood cells. Their strong anti-cancer effect is likely mediated by the presence of two ER binding ligands for 31 and an ER binding ligand combined with a cytotoxic agent for 86.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Bibencilos/química , Bibencilos/farmacología , Indoles/química , Indoles/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/química , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Bibencilos/síntesis química , Mama/efectos de los fármacos , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Indoles/síntesis química , Células MCF-7 , Modelos Moleculares , Receptores de Estrógenos/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/síntesis química
6.
Mol Med ; 20: 729-35, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25826675

RESUMEN

The cytokine macrophage migration inhibitory factor (MIF) possesses unique tautomerase enzymatic activity, which contributes to the biological functional activity of MIF. In this study, we investigated the effects of blocking the hydrophobic active site of the tautomerase activity of MIF in the pathogenesis of lung cancer. To address this, we initially established a Lewis lung carcinoma (LLC) murine model in Mif-KO and wild-type (WT) mice and compared tumor growth in a knock-in mouse model expressing a mutant MIF lacking enzymatic activity (Mif (P1G)). Primary tumor growth was significantly attenuated in both Mif-KO and Mif (P1G) mice compared with WT mice. We subsequently undertook a structure-based, virtual screen to identify putative small molecular weight inhibitors specific for the tautomerase enzymatic active site of MIF. From primary and secondary screens, the inhibitor SCD-19 was identified, which significantly attenuated the tautomerase enzymatic activity of MIF in vitro and in biological functional screens. In the LLC murine model, SCD-19, given intraperitoneally at the time of tumor inoculation, was found to significantly reduce primary tumor volume by 90% (p < 0.001) compared with the control treatment. To better replicate the human disease scenario, SCD-19 was given when the tumor was palpable (at d 7 after tumor inoculation) and, again, treatment was found to significantly reduce tumor volume by 81% (p < 0.001) compared with the control treatment. In this report, we identify a novel inhibitor that blocks the hydrophobic pocket of MIF, which houses its specific tautomerase enzymatic activity, and demonstrate that targeting this unique active site significantly attenuates lung cancer growth in in vitro and in vivo systems.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Isocumarinas/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Factores Inhibidores de la Migración de Macrófagos/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Línea Celular , Dinoprostona/metabolismo , Femenino , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Isocumarinas/farmacología , Lipopolisacáridos , Pulmón/efectos de los fármacos , Pulmón/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Carga Tumoral/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
7.
J Chem Inf Model ; 54(10): 2953-66, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25233256

RESUMEN

We report the discovery of 1-benzyl-2-(3-fluorophenyl)-4-hydroxy-3-(3-phenylpropanoyl)-2H-pyrrole-5-one as a novel non-ligand binding pocket (non-LBP) antagonist of the androgen receptor (AR) through the application of molecular topology techniques. This compound, validated through time-resolved fluorescence resonance energy transfer and fluorescence polarization biological assays, provides the basis for lead optimization and structure-activity relationship analysis of a new series of non-LBP AR antagonists. Induced-fit docking and molecular dynamics studies have been performed to establish a consistent hypothesis for the interaction of the new active molecule on the AR surface.


Asunto(s)
Antagonistas de Andrógenos/química , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Pirroles/química , Receptores Androgénicos/química , Bibliotecas de Moléculas Pequeñas/química , Sitios de Unión , Transferencia Resonante de Energía de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Humanos , Conformación Molecular , Simulación de Dinámica Molecular , Unión Proteica , Relación Estructura-Actividad , Termodinámica , Interfaz Usuario-Computador
8.
Front Immunol ; 15: 1395809, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938568

RESUMEN

Human respiratory viruses are the most prevalent cause of disease in humans, with the highly infectious RSV being the leading cause of infant bronchiolitis and viral pneumonia. Responses to type I IFNs are the primary defense against viral infection. However, RSV proteins have been shown to antagonize type I IFN-mediated antiviral innate immunity, specifically dampening intracellular IFN signaling. Respiratory epithelial cells are the main target for RSV infection. In this study, we found RSV-NS1 interfered with the IFN-α JAK/STAT signaling pathway of epithelial cells. RSV-NS1 expression significantly enhanced IFN-α-mediated phosphorylation of STAT1, but not pSTAT2; and neither STAT1 nor STAT2 total protein levels were affected by RSV-NS1. However, expression of RSV-NS1 significantly reduced ISRE and GAS promoter activity and anti-viral IRG expression. Further mechanistic studies demonstrated RSV-NS1 bound STAT1, with protein modeling indicating a possible interaction site between STAT1 and RSV-NS1. Nuclear translocation of STAT1 was reduced in the presence of RSV-NS1. Additionally, STAT1's interaction with the nuclear transport adapter protein, KPNA1, was also reduced, suggesting a mechanism by which RSV blocks STAT1 nuclear translocation. Indeed, reducing STAT1's access to the nucleus may explain RSV's suppression of IFN JAK/STAT promoter activation and antiviral gene induction. Taken together these results describe a novel mechanism by which RSV controls antiviral IFN-α JAK/STAT responses, which enhances our understanding of RSV's respiratory disease progression.


Asunto(s)
Interferón-alfa , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Factor de Transcripción STAT1 , Transducción de Señal , Proteínas no Estructurales Virales , Factor de Transcripción STAT1/metabolismo , Humanos , Interferón-alfa/metabolismo , Interferón-alfa/farmacología , Interferón-alfa/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Virus Sincitial Respiratorio Humano/fisiología , Proteínas no Estructurales Virales/metabolismo , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Quinasas Janus/metabolismo , Núcleo Celular/metabolismo , Fosforilación , Transporte Activo de Núcleo Celular , Línea Celular
9.
J Chem Inf Model ; 53(8): 2116-30, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23834240

RESUMEN

We report the synthesis and a study of the structure-activity relationships of a new series of diarylhydrazides as potential selective non-ligand binding pocket androgen receptor antagonists. Their biological activity as antiandrogens in the context of the development of treatments for castration resistant prostate cancer was evaluated using in vitro time resolved fluorescence resonance energy transfer and fluorescence polarization on target assays. Additionally, a theoretical study combining docking and molecular dynamics methods was performed to provide insight into their mechanism of action as a basis for further lead optimization studies.


Asunto(s)
Antagonistas de Andrógenos/química , Antagonistas de Andrógenos/farmacología , Diseño de Fármacos , Hidrazinas/química , Hidrazinas/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Antagonistas de Andrógenos/síntesis química , Sitios de Unión , Hidrazinas/síntesis química , Hidróxidos/química , Concentración 50 Inhibidora , Ligandos , Metilación , Conformación Proteica , Receptores Androgénicos/química , Receptores Androgénicos/metabolismo , Relación Estructura-Actividad , Termodinámica
10.
Drug Discov Today Technol ; 10(4): e467-74, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24451636

RESUMEN

Virtually all biological processes rely on protein-protein interactions (PPIs) for signal propagation, therefore representing a vast array of potentially viable therapeutic intervention points. Targeting PPIs is a relatively novel drug development strategy so computational approaches towards analysing the interface between protein partners and predicting the likelihood of developing a small molecule inhibitor are still progressing. This review provides an overview of recent successful examples of computational methodologies used to predict druggable PPIs and small molecules designed to inhibit them.


Asunto(s)
Diseño de Fármacos , Mapeo de Interacción de Proteínas , Modelos Moleculares , Péptidos/química , Unión Proteica , Bibliotecas de Moléculas Pequeñas
11.
Virology ; 581: 97-115, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36940641

RESUMEN

The majority of SARS-CoV-2 therapeutic development work has focussed on targeting the spike protein, viral polymerase and proteases. As the pandemic progressed, many studies reported that these proteins are prone to high levels of mutation and can become drug resistant. Thus, it is necessary to not only target other viral proteins such as the non-structural proteins (NSPs) but to also target the most conserved residues of these proteins. In order to understand the level of conservation among these viruses, in this review, we have focussed on the conservation across RNA viruses, conservation across the coronaviruses and then narrowed our focus to conservation of NSPs across coronaviruses. We have also discussed the various treatment options for SARS-CoV-2 infection. A synergistic melding of bioinformatics, computer-aided drug-design and in vitro/vivo studies can feed into better understanding of the virus and therefore help in the development of small molecule inhibitors against the viral proteins.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/epidemiología , Diseño de Fármacos , Proteínas Virales/genética , Brotes de Enfermedades , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química , Proteínas no Estructurales Virales/metabolismo
12.
ACS Omega ; 8(42): 39468-39480, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37901539

RESUMEN

With the advent of computer-aided drug design (CADD), traditional physical testing of thousands of molecules has now been replaced by target-focused drug discovery, where potentially bioactive molecules are predicted by computer software before their physical synthesis. However, despite being a significant breakthrough, CADD still faces various limitations and challenges. The increasing availability of data on small molecules has created a need to streamline the sourcing of data from different databases and automate the processing and cleaning of data into a form that can be used by multiple CADD software applications. Several standalone software packages are available to aid the drug designer, each with its own specific application, requiring specialized knowledge and expertise for optimal use. These applications require their own input and output files, making it a challenge for nonexpert users or multidisciplinary discovery teams. Here, we have developed a new software platform called DataPype, which wraps around these different software packages. It provides a unified automated workflow to search for hit compounds using specialist software. Additionally, multiple virtual screening packages can be used in the one workflow, and if different ways of looking at potential hit compounds all predict the same set of molecules, we have higher confidence that we should make or purchase and test the molecules. Importantly, DataPype can run on computer servers, speeding up the virtual screening for new compounds. Combining access to multiple CADD tools within one interface will enhance the early stage of drug discovery, increase usability, and enable the use of parallel computing.

13.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37513912

RESUMEN

A series of novel 3-(prop-1-en-2-yl)azetidin-2-one, 3-allylazetidin-2-one and 3-(buta-1,3-dien-1-yl)azetidin-2-one analogues of combretastatin A-4 (CA-4) were designed and synthesised as colchicine-binding site inhibitors (CBSI) in which the ethylene bridge of CA-4 was replaced with a ß-lactam (2-azetidinone) scaffold. These compounds, together with related prodrugs, were evaluated for their antiproliferative activity, cell cycle effects and ability to inhibit tubulin assembly. The compounds demonstrated significant in vitro antiproliferative activities in MCF-7 breast cancer cells, particularly for compounds 9h, 9q, 9r, 10p, 10r and 11h, with IC50 values in the range 10-33 nM. These compounds were also potent in the triple-negative breast cancer (TBNC) cell line MDA-MB-231, with IC50 values in the range 23-33 nM, and were comparable with the activity of CA-4. The compounds inhibited the polymerisation of tubulin in vitro, with significant reduction in tubulin polymerization, and were shown to interact at the colchicine-binding site on tubulin. Flow cytometry demonstrated that compound 9q arrested MCF-7 cells in the G2/M phase and resulted in cellular apoptosis. The antimitotic properties of 9q in MCF-7 human breast cancer cells were also evaluated, and the effect on the organization of microtubules in the cells after treatment with compound 9q was observed using confocal microscopy. The immunofluorescence results confirm that ß-lactam 9q is targeting tubulin and resulted in mitotic catastrophe in MCF-7 cells. In silico molecular docking supports the hypothesis that the compounds interact with the colchicine-binding domain of tubulin. Compound 9q is a novel potent microtubule-destabilising agent with potential as a promising lead compound for the development of new antitumour agents.

14.
J Chem Inf Model ; 52(9): 2387-97, 2012 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-22853713

RESUMEN

We report the conformational analysis of a series of 3-hydroxy-N'-((naphthalen-2-yl)methylene)naphthalene-2-carbohydrazides. This class of compounds has recently been reported as androgen receptor (AR)-coactivator disruptors for potential application in prostate cancer therapy. Definition of the E/Z isomerism around the imine linker group (hydrazide) is significant from a mechanistic point of view. A detailed study using theoretical calculations coupled with experimental techniques has allowed us determine an initial preference for the E isomer. The biological activity of newly synthesized compounds at the androgen receptor, along with a series of structural analogs, was determined and provides the basis for preliminary qualitative structure-activity relationship analysis.


Asunto(s)
Antagonistas de Andrógenos/farmacología , Receptores Androgénicos/química , Antagonistas de Andrógenos/química , Cristalografía por Rayos X , Isomerismo , Ligandos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Modelos Moleculares , Conformación Proteica
15.
J Mol Graph Model ; 115: 108228, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35667141

RESUMEN

Discovering new hit small molecules binding to a specific protein binding site can be a difficult task. In support of existing procedures, a proof of concept methodology has been developed to process fragment flooded X-ray protein structures using the K-means clustering algorithm in order to derive pharmacophore models of the binding site. The novel method includes the implementation of several K-means initialisation methods in serial and parallel versions. Furthermore, required parameter optimisations for two initialisation methods was achieved, which was necessary to determine their validity and performance. A graph theory algorithm was adapted to compare the clustering-derived pharmacophores with X-ray ligand structure-derived pharmacophores to confirm that they mapped to each other. Initial proof of concept method validation was demonstrated using the Androgen Receptor (AR).


Asunto(s)
Descubrimiento de Drogas , Proteínas , Algoritmos , Sitios de Unión , Análisis por Conglomerados , Ligandos , Modelos Moleculares , Unión Proteica
16.
J Biomol Struct Dyn ; 40(3): 1316-1330, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32964805

RESUMEN

The COVID-19 pandemic has negatively affected human life globally. It has led to economic crises and health emergencies across the world, spreading rapidly among the human population and has caused many deaths. Currently, there are no treatments available for COVID-19 so there is an urgent need to develop therapeutic interventions that could be used against the novel coronavirus infection. In this research, we used computational drug design technologies to repurpose existing drugs as inhibitors of SARS-CoV-2 viral proteins. The Broad Institute's Drug Repurposing Hub consists of in-development/approved drugs and was computationally screened to identify potential hits which could inhibit protein targets encoded by the SARS-CoV-2 genome. By virtually screening the Broad collection, using rationally designed pharmacophore features, we identified molecules which may be repurposed against viral nucleocapsid and non-structural proteins. The pharmacophore features were generated after careful visualisation of the interactions between co-crystalised ligands and the protein binding site. The ChEMBL database was used to determine the compound's level of inhibition of SARS-CoV-2 and correlate the predicted viral protein target with whole virus in vitro data. The results from this study may help to accelerate drug development against COVID-19 and the hit compounds should be progressed through further in vitro and in vivo studies on SARS-CoV-2.


Asunto(s)
COVID-19 , Preparaciones Farmacéuticas , Antivirales/farmacología , Reposicionamiento de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Pandemias , SARS-CoV-2
17.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36145265

RESUMEN

The stilbene combretastatin A-4 (CA-4) is a potent microtubule-disrupting agent interacting at the colchicine-binding site of tubulin. In the present work, the synthesis, characterisation and mechanism of action of a series of 3-fluoro and 3,3-difluoro substituted ß-lactams as analogues of the tubulin-targeting agent CA-4 are described. The synthesis was achieved by a convenient microwave-assisted Reformatsky reaction and is the first report of 3-fluoro and 3,3-difluoro ß-lactams as CA-4 analogues. The ß-lactam compounds 3-fluoro-4-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxy phenyl)azetidin-2-one 32 and 3-fluoro-4-(3-fluoro-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one) 33 exhibited potent activity in MCF-7 human breast cancer cells with IC50 values of 0.075 µM and 0.095 µM, respectively, and demonstrated low toxicity in non-cancerous cells. Compound 32 also demonstrated significant antiproliferative activity at nanomolar concentrations in the triple-negative breast cancer cell line Hs578T (IC50 0.033 µM), together with potency in the invasive isogenic subclone Hs578Ts(i)8 (IC50 = 0.065 µM), while 33 was also effective in MDA-MB-231 cells (IC50 0.620 µM). Mechanistic studies demonstrated that 33 inhibited tubulin polymerisation, induced apoptosis in MCF-7 cells, and induced a downregulation in the expression of anti-apoptotic Bcl2 and survivin with corresponding upregulation in the expression of pro-apoptotic Bax. In silico studies indicated the interaction of the compounds with the colchicine-binding site, demonstrating the potential for further developing novel cancer therapeutics as microtubule-targeting agents.

18.
Bioorg Med Chem Lett ; 21(11): 3335-41, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21531557

RESUMEN

We describe the application of ligand based virtual screening technologies towards the discovery of novel plasmepsin (PM) inhibitors, a family of malarial parasitic aspartyl proteases. Pharmacophore queries were used to screen vendor libraries in search of active and selective compounds. The virtual hits were biologically assessed for activity and selectivity using whole cell Plasmodium falciparum parasites and on target in PM II, PM IV and the closely related human homologue, Cathepsin D assays. Here we report the virtual screening highlights, structures of the hits and their demonstrated biological activity.


Asunto(s)
Antimaláricos/farmacología , Ácido Aspártico Endopeptidasas/metabolismo , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/química , Proteasas de Ácido Aspártico/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Ligandos , Modelos Moleculares , Estructura Molecular , Plasmodium falciparum/enzimología
19.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34832901

RESUMEN

Antimitotic drugs that target tubulin are among the most widely used chemotherapeutic agents; however, the development of multidrug resistance has limited their clinical activity. We report the synthesis and biological properties of a series of novel 3-chloro-ß-lactams and 3,3-dichloro-ß-lactams (2-azetidinones) that are structurally related to the tubulin polymerisation inhibitor and vascular targeting agent, Combretastatin A-4. These compounds were evaluated as potential tubulin polymerisation inhibitors and for their antiproliferative effects in breast cancer cells. A number of the compounds showed potent activity in MCF-7 breast cancer cells, e.g., compound 10n (3-chloro-4-(3-hydroxy-4-methoxy-phenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one) and compound 11n (3,3-dichloro-4-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)-azetidin-2-one), with IC50 values of 17 and 31 nM, respectively, and displayed comparable cellular effects to those of Combretastatin A-4. Compound 10n demonstrated minimal cytotoxicity against non-tumorigenic HEK-293T cells and inhibited the in vitro polymerisation of tubulin with significant G2/M phase cell cycle arrest. Immunofluorescence staining of MCF-7 cells confirmed that ß-lactam 10n caused a mitotic catastrophe by targeting tubulin. In addition, compound 10n promoted apoptosis by regulating the expression of pro-apoptotic protein BAX and anti-apoptotic proteins Bcl-2 and Mcl-1. Molecular docking was used to explore the potential molecular interactions between novel 3-chloro-ß-lactams and the amino acid residues of the colchicine binding active site cavity of ß-tubulin. Collectively, these results suggest that 3-chloro-2-azetidinones, such as compound 10n, could be promising lead compounds for further clinical anti-cancer drug development.

20.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671674

RESUMEN

We report the synthesis and biochemical evaluation of compounds that are designed as hybrids of the microtubule targeting benzophenone phenstatin and the aromatase inhibitor letrozole. A preliminary screening in estrogen receptor (ER)-positive MCF-7 breast cancer cells identified 5-((2H-1,2,3-triazol-1-yl)(3,4,5-trimethoxyphenyl)methyl)-2-methoxyphenol 24 as a potent antiproliferative compound with an IC50 value of 52 nM in MCF-7 breast cancer cells (ER+/PR+) and 74 nM in triple-negative MDA-MB-231 breast cancer cells. The compounds demonstrated significant G2/M phase cell cycle arrest and induction of apoptosis in the MCF-7 cell line, inhibited tubulin polymerisation, and were selective for cancer cells when evaluated in non-tumorigenic MCF-10A breast cells. The immunofluorescence staining of MCF-7 cells confirmed that the compounds targeted tubulin and induced multinucleation, which is a recognised sign of mitotic catastrophe. Computational docking studies of compounds 19e, 21l, and 24 in the colchicine binding site of tubulin indicated potential binding conformations for the compounds. Compounds 19e and 21l were also shown to selectively inhibit aromatase. These compounds are promising candidates for development as antiproliferative, aromatase inhibitory, and microtubule-disrupting agents for breast cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA