Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
ScientificWorldJournal ; 2014: 726303, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24587747

RESUMEN

We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube.


Asunto(s)
Grafito/química , Modelos Teóricos , Nanotubos de Carbono/química , Movimiento (Física)
2.
Nanomaterials (Basel) ; 12(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35564146

RESUMEN

We predict Bose-Einstein condensation and superfluidity of dipolar excitons, formed by electron-hole pairs in spatially separated gapped hexagonal α-T3 (GHAT3) layers. In the α-T3 model, the AB-honeycomb lattice structure is supplemented with C atoms located at the centers of the hexagons in the lattice. We considered the α-T3 model in the presence of a mass term which opens a gap in the energy-dispersive spectrum. The gap opening mass term, caused by a weak magnetic field, plays the role of Zeeman splitting at low magnetic fields for this pseudospin-1 system. The band structure of GHAT3 monolayers leads to the formation of two distinct types of excitons in the GHAT3 double layer. We consider two types of dipolar excitons in double-layer GHAT3: (a) "A excitons", which are bound states of electrons in the conduction band (CB) and holes in the intermediate band (IB), and (b) "B excitons", which are bound states of electrons in the CB and holes in the valence band (VB). The binding energy of A and B dipolar excitons is calculated. For a two-component weakly interacting Bose gas of dipolar excitons in a GHAT3 double layer, we obtain the energy dispersion of collective excitations, the sound velocity, the superfluid density, and the mean-field critical temperature Tc for superfluidity.

3.
J Phys Condens Matter ; 33(39)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34233302

RESUMEN

The calculated defect corrections to the polarization and dielectric functions for Bloch electrons in quantum wells are presented. These results were employed to derive the first two moment equations from the Boltzmann transport theory and then applied to explore the role played by defects on the magneto-transport of Bloch electrons. Additionally, we have derived analytically the inverse momentum-relaxation time and mobility tensor for Bloch electrons by making use of the screened defect-corrected polarization function. Based on quantum-statistical theory, we have investigated the defect capture and charging dynamics by employing a parameterized physics-based model for defects to obtain defect wave functions. Both capture and relaxation rates, as well as the density for captured Bloch electrons, were calculated self-consistently as functions of temperature, doping density and chosen defect parameters. By applying the energy-balance equation, the number of occupied energy levels and the chemical potential of defects were determined, with which the transition rate for defect capturing was obtained. By applying these results, the defect energy-relaxation, capture and escape rates, and Bloch-electron chemical potential were calculated self-consistently for a non-canonical subsystem of Bloch electrons. At the same time, the energy- and momentum-relaxation rates of Bloch electrons, as well as the current suppression factor, were also investigated quantitatively. By combining all these results, the temperature dependence of the Hall and longitudinal mobilities was presented for Bloch electrons in either single- or multi-quantum wells.

4.
Sci Rep ; 11(1): 20577, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663854

RESUMEN

We have calculated and investigated the electronic states, dynamical polarization function and the plasmon excitations for [Formula: see text] nanoribbons with armchair-edge termination. The obtained plasmon dispersions are found to depend significantly on the number of atomic rows across the ribbon and the energy gap which is also determined by the nanoribbon geometry. The bandgap appears to have the strongest effect on both the plasmon dispersions and their Landau damping. We have determined the conditions when relative hopping parameter [Formula: see text] of an [Formula: see text] lattice has a strong effect on the plasmons which makes our material distinguished from graphene nanoribbons. Our results for the electronic and collective properties of [Formula: see text] nanoribbons are expected to find numerous applications in the development of the next-generation electronic, nano-optical and plasmonic devices.

5.
Sci Rep ; 6: 21063, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26883086

RESUMEN

We predict the existence of low-frequency nonlocal plasmons at the vacuum-surface interface of a superlattice of N graphene layers interacting with conducting substrate. We derive a dispersion function that incorporates the polarization function of both the graphene monolayers and the semi-infinite electron liquid at whose surface the electrons scatter specularly. We find a surface plasmon-polariton that is not damped by particle-hole excitations or the bulk modes and which separates below the continuum mini-band of bulk plasmon modes. The surface plasmon frequency of the hybrid structure always lies below ωs = ωp/√2, the surface plasmon frequency of the conducting substrate. The intensity of this mode depends on the distance of the graphene layers from the conductor's surface, the energy band gap between valence and conduction bands of graphene monolayer and, most importantly, on the number of two-dimensional layers. For a sufficiently large number of layers (N ≥ 7) the hybrid structure has no surface plasmon. The existence of plasmons with different dispersion relations indicates that quasiparticles with different group velocity may coexist for various ranges of wavelengths determined by the number of layers in the superlattice.

6.
J Phys Condens Matter ; 22(50): 505304, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21406795

RESUMEN

The electron spin effects on the surface of a nanotube have been considered through the spin-orbit interaction (SOI), arising from the electron confinement on the surface of the nanotube. This is of the same nature as the Rashba-Bychkov SOI at a semiconductor heterojunction. We estimate the effect of disorder within a potential barrier on the transmission probability. Using a continuum model, we obtain analytic expressions for the spin-split energy bands for electrons on the surface of nanotubes in the presence of SOI. First we calculate analytically the amplitudes of scattering from a potential barrier located around the axis of the nanotube into spin-dependent states. The effect of disorder on the scattering process is included phenomenologically and induces a reduction in the transition probability. We analyze the relative role of SOI and disorder in the transmission probability which depends on the angular and linear momentum of the incoming particle, and its spin orientation. Finally we demonstrate that in the presence of disorder, perfect transmission may not be achieved for finite barrier heights.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA