RESUMEN
As novel liquid chromatography-mass spectrometry (LC-MS) technologies for proteomics offer a substantial increase in LC-MS runs per day, robust and reproducible sample preparation emerges as a new bottleneck for throughput. We introduce a novel strategy for positive-pressure 96-well filter-aided sample preparation (PF96) on a commercial positive-pressure solid-phase extraction device. PF96 allows for a five-fold increase in throughput in conjunction with extraordinary reproducibility with Pearson product-moment correlations on the protein level of r = 0.9993, as demonstrated for mouse heart tissue lysate in 40 technical replicates. The targeted quantification of 16 peptides in the presence of stable-isotope-labeled reference peptides confirms that PF96 variance is barely assessable against technical variation from nanoLC-MS instrumentation. We further demonstrate that protein loads of 36-60 µg result in optimal peptide recovery, but lower amounts ≥3 µg can also be processed reproducibly. In summary, the reproducibility, simplicity, and economy of time provide PF96 a promising future in biomedical and clinical research.
Asunto(s)
Péptidos , Proteómica , Animales , Cromatografía Liquida/métodos , Humanos , Espectrometría de Masas/métodos , Ratones , Péptidos/análisis , Proteómica/métodos , Reproducibilidad de los ResultadosRESUMEN
Marinesco-Sjögren syndrome is a rare human disorder caused by biallelic mutations in SIL1 characterized by cataracts in infancy, myopathy and ataxia, symptoms which are also associated with a novel disorder caused by mutations in INPP5K. While these phenotypic similarities may suggest commonalties at a molecular level, an overlapping pathomechanism has not been established yet. In this study, we present six new INPP5K patients and expand the current mutational and phenotypical spectrum of the disease showing the clinical overlap between Marinesco-Sjögren syndrome and the INPP5K phenotype. We applied unbiased proteomic profiling on cells derived from Marinesco-Sjögren syndrome and INPP5K patients and identified alterations in d-3-PHGDH as a common molecular feature. d-3-PHGDH modulates the production of l-serine and mutations in this enzyme were previously associated with a neurological phenotype, which clinically overlaps with Marinesco-Sjögren syndrome and INPP5K disease. As l-serine administration represents a promising therapeutic strategy for d-3-PHGDH patients, we tested the effect of l-serine in generated sil1, phgdh and inpp5k a+b zebrafish models, which showed an improvement in their neuronal phenotype. Thus, our study defines a core phenotypical feature underpinning a key common molecular mechanism in three rare diseases and reveals a common and novel therapeutic target for these patients.
Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Inositol Polifosfato 5-Fosfatasas/genética , Mutación , Fenotipo , Fosfoglicerato-Deshidrogenasa/genética , Degeneraciones Espinocerebelosas/genética , Adolescente , Adulto , Animales , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/patología , Proteómica , Degeneraciones Espinocerebelosas/patología , Pez CebraRESUMEN
In the past few years, the focus of phosphoproteomics has shifted from merely qualitative to quantitative and targeted studies. Tryptic digestion is a critical step that directly affects quantification and that can be impaired by phosphorylation. Therefore, we systematically characterized the digestion efficiency of 19 nonmodified and phosphorylated model peptides. Whereas we quantified a strong reduction of tryptic cleavage within phosphorylated PKA motifs (R)-R-X-pS/pT and also R-X-X-pT sequences, (R)-R-X-pY sequences were almost unaffected. Structural prediction implied the formation of salt bridges between R/K cleavage sites and phosphoamino acids pS/pT as the main reason for impaired tryptic digestion. We evaluated different conditions to optimize the digestion of such "resistant" phosphopeptides, yielding a substantial improvement of digestion efficiency. We performed a quantitative large-scale phosphoproteomic analysis of human platelets to validate our findings in a complex biological sample. Here, increasing trypsin concentrations up to a trypsin to peptide ratio of 1:10 led to a significant gain (i) in the overall number of phosphorylation sites (up to 9%) and (ii) in the intensities of individual phosphopeptides, thereby improving the sensitivity of phosphopeptide quantification. Still, for certain sequences, the negative impact of phosphorylation on digestion efficiency will further complicate the analysis of phosphorylation stoichiometry.
Asunto(s)
Fosfopéptidos/química , Fosfoproteínas/química , Proteolisis , Secuencia de Aminoácidos , Plaquetas/metabolismo , Humanos , Datos de Secuencia Molecular , Mapeo Peptídico , Fosfoproteínas/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteoma/química , Proteoma/metabolismo , Soluciones , Espectrometría de Masas en Tándem , Tripsina/químicaRESUMEN
In the fungus Fusarium fujikuroi, carotenoid production is up-regulated by light and down-regulated by the CarS RING finger protein, which modulates the mRNA levels of carotenoid pathway genes (car genes). To identify new potential regulators of car genes, we used a biotin-mediated pull-down procedure to detect proteins capable of binding to their promoters. We focused our attention on one of the proteins found in the screening, belonging to the High-Mobility Group (HMG) family that was named HmbC. The deletion of the hmbC gene resulted in increased carotenoid production due to higher mRNA levels of car biosynthetic genes. In addition, the deletion resulted in reduced carS mRNA levels, which could also explain the partial deregulation of the carotenoid pathway. The mutants exhibited other phenotypic traits, such as alterations in development under certain stress conditions, or reduced sensitivity to cell wall degrading enzymes, revealed by less efficient protoplast formation, indicating that HmbC is also involved in other cellular processes. In conclusion, we identified a protein of the HMG family that participates in the regulation of carotenoid biosynthesis. This is probably achieved through an epigenetic mechanism related to chromatin structure, as is frequent in this class of proteins.
Asunto(s)
Carotenoides , Fusarium , Pared Celular , Epigénesis Genética , Fusarium/genéticaRESUMEN
Mass spectrometric characterization of protein modifications is usually based on single peptides. With the advent of large-scale PTM-focussed MS studies, vast amounts of data are generated continuously, providing biologists extremely valuable and virtually never-ending sources for targeted functional research. However, even more than for proteomics in general, appropriate strategies for quality control of the different steps of the analytical strategy are imperative to prevent functional researchers from doing Sisyphos work on false-positive and unconfident PTM assignments. Here, we describe strategies to address the important issue of quality control for PTM analysis on various levels of the analytical pipeline: sample preparation/processing, analysis/identification and finally data interpretation, for qualitative as well as quantitative studies.
Asunto(s)
Péptidos/química , Proteómica/normas , Espectrometría de Masas en Tándem/normas , Secuencia de Aminoácidos , Animales , Cromatografía Liquida , Interpretación Estadística de Datos , Bases de Datos de Proteínas/estadística & datos numéricos , Glicosilación , Humanos , Péptidos/aislamiento & purificación , Proteómica/estadística & datos numéricos , Control de Calidad , Motor de Búsqueda , Programas Informáticos , Espectrometría de Masas en Tándem/estadística & datos numéricos , TitanioRESUMEN
Lasso peptides are a diverse class of ribosomally synthesized and post-translationally modified peptides (RiPPs). Their proteolytic and thermal stability alongside their growing potential as therapeutics has increased attention to these antimicrobial peptides. With the advent of genome mining, the discovery of RiPPs allows for the accurate prediction of putatively encoded structures, however, MSn experiments only provide partial sequence confirmation, therefore 2D NMR experiments are necessary for characterisation. Multiple MS/MS techniques were applied to two structurally characterized lasso peptides, huascopeptin and leepeptin, and one uncharacterized lasso peptide, citrulassin C, which was not isolable in sufficient quantity for NMR analysis. We have shown that MS2 can be used to elucidate the full amino acid sequences previously predicted with genome mining for this compound class. HCD was able to open the macrocycles and fragment the newly opened linear peptides, confirming the complete amino acid sequences of the characterised lasso peptides. In addition, to determine if this technique could be applied at the earliest stages of the isolation process, we targeted a lasso peptide found by genome mining, citrulassin C, and were able to fully elucidate the amino acid sequence using only MS2 from a semi-crude extract of Streptomyces huasconensis HST28T.
Asunto(s)
Espectrometría de Masas/métodos , Péptidos Cíclicos/genética , Análisis de Secuencia de Proteína/métodos , Secuencia de Aminoácidos , Péptidos Cíclicos/químicaRESUMEN
In bacteria, the transcription of virulence genes is usually controlled by a cell density-dependent process known as "quorum sensing" (QS). QS relies on small diffusible signaling molecules that cross the bacterial cell wall and activate target transcription factors after a threshold concentration has been reached. Besides two hierarchical QS circuits based on N-acylhomoserine lactones, the human opportunistic pathogen Pseudomonas aeruginosa integrates a signaling system that depends on 2-heptyl-3-hydroxy-4-quinolone, termed "Pseudomonas quinolone signal" (PQS). PQS is produced from genes encoded in the pqs operon, which in addition to the biosynthetic enzymes PqsA-D contains a fifth gene, pqsE, that is not required for production of PQS but whose disruption leads to loss of signal transduction in several but not all pqs operon-dependent processes. PqsE was hence termed "PQS response protein", but its exact mechanism of action is unknown. We have determined the crystal structure of recombinant PqsE and show that it possesses a metallo-beta-lactamase fold with an Fe(II)Fe(III) center in the active site. A copurified ligand was assigned as benzoate and may indicate that PqsE exerts its regulatory effect by converting a chorismate-derived molecule. Further, PqsE was found to slowly hydrolyze phosphodiesters including single- and double-stranded DNA as well as mRNA and also the thioester S-(4-nitrobenzoyl)mercaptoethane. Higher activity was observed after incubation with Co(2+) and, to lesser entent, Mn(2+), suggesting that the Fe(II)Fe(III) center of recombinant PqsE may be an artifact of heterologous expression. A crystal complex of the E182A mutant with bis-pNPP was obtained and suggests a catalytic mechanism for hydrolysis.
Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hidrolasas/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Bacterianas/genética , Calorimetría , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Hidrolasas/genética , Cinética , Modelos Genéticos , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/genética , Quinolonas/metabolismo , Percepción de Quorum/fisiología , Proteínas Recombinantes/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismoRESUMEN
: Hotspot testing for activating KRAS mutations is used in precision oncology to select colorectal cancer (CRC) patients who are eligible for anti-EGFR treatment. However, even for KRASwildtype tumors anti-EGFR response rates are <30%, while mutated-KRAS does not entirely rule out response, indicating the need for improved patient stratification. We performed proteogenomic phenotyping of KRASwildtype and KRASG12V CRC liver metastases (mCRC). Among >9000 proteins we detected considerable expression changes including numerous proteins involved in progression and resistance in CRC. We identified peptides representing a number of predicted somatic mutations, including KRASG12V. For eight of these, we developed a multiplexed parallel reaction monitoring (PRM) mass spectrometry assay to precisely quantify the mutated and canonical protein variants. This allowed phenotyping of eight mCRC tumors and six paired healthy tissues, by determining mutation rates on the protein level. Total KRAS expression varied between tumors (0.47-1.01 fmol/µg total protein) and healthy tissues (0.13-0.64 fmol/µg). In KRASG12V-mCRC, G12V-mutation levels were 42-100%, while one patient had only 10% KRASG12V but 90% KRASwildtype. This might represent a missed therapeutic opportunity: based on hotspot sequencing, the patient was excluded from anti-EGFR treatment and instead received chemotherapy, while PRM-based tumor-phenotyping indicates the patient might have benefitted from anti-EGFR therapy.
RESUMEN
Detecting agents allegedly or evidently promoting growth such as human growth hormone (GH) or growth hormone releasing peptides (GHRP) in doping controls has represented a pressing issue for sports drug testing laboratories. While GH is a recombinant protein with a molecular weight of 22â¯kDa, the GHRPs are short (3-6 amino acids long) peptides with GH releasing properties. The endogenously produced GH (22â¯kDa isoform) consists of 191 amino acids and has a monoisotopic molecular mass of 22,124â¯Da. Within this study, a slightly modified form of GH was discovered consisting of 192 amino acids carrying an additional alanine at the N-terminus, leading to a monoisotopic mass of 22,195â¯Da. This was confirmed by top-down and bottom-up experiments using liquid chromatography coupled to high resolution/high accuracy mass spectrometry. Additionally, three analogues of GHRPs were identified as Gly-GHRP-6, Gly-GHRP-2 and Gly-Ipamorelin, representing the corresponding GHRP extended by a N-terminal glycine residue. The structure of these peptides was characterised by means of high resolution (tandem) mass spectrometry, and for Gly-Ipamorelin and Gly-GHRP-2 their identity was additionally confirmed by custom synthesis. Further, established in-vitro experiments provided preliminary information considering the potential metabolism after administration.
Asunto(s)
Doping en los Deportes , Hormona de Crecimiento Humana/análisis , Oligopéptidos/análisis , Detección de Abuso de Sustancias/métodos , Cromatografía Liquida , Humanos , Espectrometría de Masas en TándemRESUMEN
Lipocalin 24p3 plays a direct role in iron transport and regulates the levels of important proteins of the iron metabolism. Iron-loaded 24p3 binds to its specific receptor (24p3R) on the cell surface. Upon binding to its receptor, 24p3 is internalized into the cell, where it releases its bound iron. Iron-free 24p3 can withdraw iron from inside the cell to the outside by a reverse mechanism. We analyzed the role of the murine 24p3 gene Lcn2 (alias 24p3) as a target of the Wnt pathway. In cells with activated Wnt pathway, the levels of 24p3 protein and RNA were decreased. The withdrawal of iron led to 24p3 downregulation, and iron addition to iron-deprived cells induced 24p3 expression. Despite its strong inhibitory effect on 24p3 expression, Wnt pathway activation had no effect on the intracellular iron level. In cells with nonactivated Wnt pathway, we found an as yet unidentified transcript of 24p3R. Our results indicate independent regulation of 24p3 expression by the Wnt pathway and by the intracellular iron level. Differential splicing of the 24p3R transcript, depending on the activation state of the Wnt pathway, may modify the function of 24p3.
Asunto(s)
Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Hierro/metabolismo , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Proteínas Wnt/metabolismo , Animales , Secuencia de Bases , ADN Complementario/genética , Regulación de la Expresión Génica/efectos de los fármacos , Quelantes del Hierro/farmacología , Lipocalina 2 , Lipocalinas , Ratones , Datos de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , ConejosRESUMEN
Archaea are characterized by a unique life style in often environmental extremes but their thorough investigation is currently hampered by a limited set of suitable in vivo research methodologies. Here, we demonstrate that in vivo activity-based protein profiling (ABPP) may be used to sensitively detect either native or heterogeneously expressed active enzymes in living archaea even under these extreme conditions. In combination with the development of a genetically engineered archaeal screening strain, ABPP can furthermore be used in functional enzyme screenings from (meta)genome samples. We anticipate that our ABPP approach may therefore find application in basic archaeal research but also in the discovery of novel enzymes from (meta)genome libraries.
Asunto(s)
Proteínas Arqueales/metabolismo , Extremófilos/metabolismo , Hidrolasas/metabolismo , Proteómica/métodos , Espectrometría de Masas , Reproducibilidad de los Resultados , Serina/metabolismoRESUMEN
A procedure is proposed for the determination of the authenticity of white wines from four German wine-growing regions (Baden, Rheingau, Rheinhessen, and Pfalz) based on their content of some major, trace, and ultratrace elements. One hundred and twenty-seven white wine samples possessing a certificate of origin, all of the 2000 vintage, were analyzed. The concentrations of 13 elements (Li, B, Mg, Ca, V, Mn, Co, Fe, Zn, Rb, Sr, Cs, and Pb) were determined in wine diluted 1:20 by sector field inductively coupled plasma mass spectrometry (SF-ICP-MS). Indium was routinely used as internal standard. Supervised pattern recognition techniques such as discriminant analysis and classification trees were applied for the interpretation of the data. A quadratic discriminant analysis (QDA) allowed the four regions to be discriminated with 83% accuracy when using only eight variables (Li, B, Mg, Fe, Zn, Sr, Cs, and Pb), and the prediction ability for classifying new samples was 76%. By use of a second method, a decision tree, the classification of samples coming from the four regions could be performed with an accuracy of 84% when only four elements were used: Li (very low in samples from Baden), Zn (abnormally low in the samples from the Rheingau), and Mg and Sr (both important for the differentiation between Pfalz and Rheinhessen samples). For this method, the prediction ability was only 74% in the identification of unknown samples. The robustness of the QDA model was not good enough, and therefore the tree is better recommended for the classification of new wine samples from these areas of German wine production.
Asunto(s)
Metales/análisis , Vino/análisis , Vino/clasificación , Alemania , Espectrometría de Masas , Sensibilidad y EspecificidadRESUMEN
We have studied the binding of the toxic element Cd to plant proteins and have used for this purpose spinach (Spinacia oleracea L.) plants treated with 50 µM Cd(II) as a model system. Laser ablation ICP-MS has been applied for the screening of Cd-binding proteins after separation by native anodal polyacrylamide gel electrophoresis (AN-PAGE) and electroblotting onto membranes. The main Cd-carrying protein band was isolated and investigated by nano-electrospray ionization-Fourier transform ion cyclotron resonance (FTICR) mass spectrometry after tryptic digestion. By this procedure, the main Cd-binding protein was identified as ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). The latter enzyme has been discussed in the literature to be affected in its activity by oxidative stress induced by Cd. However, in this paper it is demonstrated for the first time that RuBisCO directly binds Cd and thus may be directly altered by this toxic element. A commercially available protein standard was used to verify direct binding of Cd(II) to the protein, even without metabolisation. The resulting metal-protein complex was shown to be stable enough to survive AN-PAGE separation and electroblotting. By the use of size exclusion chromatography coupled with ICP-MS it was demonstrated that the RuBisCO protein standard shows similar metal binding properties to Cd. Furthermore, essential elements such as Mn(II), Fe(II) and Cu(II), which are known to possibly replace the RuBisCO activator Mg(II), were investigated in addition to Zn(II). Again, similar binding properties in comparison to the plant protein were observed.
Asunto(s)
Cadmio/metabolismo , Terapia por Láser/métodos , Espectrometría de Masas/métodos , Metalotioneína/metabolismo , Proteínas de Plantas/metabolismo , Spinacia oleracea/metabolismo , Secuencia de Aminoácidos , Metalotioneína/química , Metalotioneína/aislamiento & purificación , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Unión Proteica , Ribulosa-Bifosfato Carboxilasa/metabolismo , Spinacia oleracea/químicaRESUMEN
The endonuclease tRNase Z from A. thaliana (AthTRZ1) was originally isolated for its tRNA 3' processing activity. Here we show that AthTRZ1 also hydrolyzes the phosphodiester bond in bis(p-nitrophenyl) phosphate (bpNPP) with a kcat of 7.4 s-1 and a KM of 8.5 mM. We analyzed 22 variants of AthTRZ1 with respect to their ability to hydrolyze bpNPP. This mutational mapping identified fourteen variants that lost the ability to hydrolyze bpNPP and seven variants with reduced activity. Surprisingly, a single amino acid change (R252G) resulted in a ten times higher activity compared to the wild type enzyme. tRNase Z enzymes exist in long and short forms. We show here that in contrast to the short tRNase Z enzyme AthTRZ1, the long tRNase Z enzymes do not have bpNPP hydrolysis activity pointing to fundamental differences in substrate cleavage between the two enzyme forms. Furthermore, we determined the metal content of AthTRZ1 and analyzed the metal requirement for bpNPP hydrolysis. AthTRZ1 shows a high affinity for Zn2+ ions; even upon incubation with metal chelators, 0.76 Zn2+ ions are retained per dimer. In contrast to bpNPP hydrolysis, pre-tRNA processing requires additional metal ions, Mn2+ or Mg2+, as Zn2+ ions alone are insufficient.
Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Manganeso/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Zinc/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Catálisis , Cristalografía por Rayos X , Endorribonucleasas/genética , Hidrólisis , Cinética , Manganeso/química , Modelos Moleculares , Mutación/genética , Unión Proteica , Estructura Terciaria de Proteína , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/enzimología , Homología Estructural de Proteína , Especificidad por Sustrato , Zinc/química , beta-Lactamasas/metabolismoRESUMEN
The improved analytical capability of direct-current (dc) and radiofrequency (rf) "fast flow" glow discharges coupled to a sector field mass spectrometer (GD-SFMS) are presented. In particular, the effect of GD chamber design has been studied to obtain suitable crater shapes for depth-profile analysis of solid samples while maintaining the high sensitivity and stability of this source. In this study it was observed that the distance between the sample surface and the end of the flow tube is critical and so careful optimisation is needed. Under optimum conditions plane crater profiles, with high ion-signal sensitivity and sufficient stability, were obtained. The capability to determine qualitative and semi-quantitative depth profiles is presented here using, as model, a coated sample of certified thickness. Finally, the depth resolution achieved for qualitative depth profiles obtained by rf-GD-(SF)MS is compared with that for the well-established rf-GD optical emission spectroscopy (OES) technique.
Asunto(s)
Espectrometría de Masas/instrumentación , Fenómenos Químicos , Química Física , Diseño de Equipo , Espectrometría de Masas/métodos , Reproducibilidad de los Resultados , Espectrometría Raman/métodos , Propiedades de SuperficieRESUMEN
Heavy metal concentrations were measured in airborne dust collected at three sites with different traffic densities from August 2001 to July 2002 in the Frankfurt am Main area. Bulk samples of particulate matter (PM) with an aerodynamic equivalent diameter of <22 microm were collected on cellulose nitrate filters using air filtration devices. Fractionated samples of PM with an aerodynamic equivalent diameter of <10 microm were collected using an eight-stage Andersen impactor. Pb, Cd, Mn, Ni, Zn, V, As, Sb, Cu, Cr, Co, and Ce were determined by inductively coupled plasma sector field mass spectrometry, Pt and Rh were determined by adsorptive voltammetry, and Pd was determined by total reflection X-ray fluorescence analysis. The results show that the highest airborne heavy metal concentrations occurred at the main street with a large volume of traffic. With the exception of Co, V, Ce, and Mn, the heavy metals had an elevated enrichment factor compared to their concentrations in the continental crust. The main street site was especially contaminated with Sb, Zn, Cu, V, and Ni. Motor vehicles are the likely source of emissions. With the exception of Cr, Cu, and Zn, most of the airborne heavy metal concentrations determined for impactor samples deviate slightly from the results for total airborne dust. Heavy metal particle size distributions can be divided into three groups. For metals such as As, Cd, Pb, and V, the main fraction can be found in fine particles with a diameter of <2.1 microm, whereas Ce, Cr, Co, and Ni occur mainly in coarse particles with a diameter of >2.1 microm. Cu, Mn, Sb, Zn, Pt, Pd, and Rh occur in high concentrations in the medium range of the impactor stages (particle diameters of 1.1-4.7 microm). Metal concentrations in fine dust particles are needed to assess the human health risks of their inhalation.
Asunto(s)
Contaminantes Atmosféricos/análisis , Metales Pesados/análisis , Emisiones de Vehículos/análisis , Ciudades , Polvo , Monitoreo del Ambiente , Alemania , Tamaño de la PartículaRESUMEN
Laser ablation inductively coupled plasma-mass spectrometry (ICP-MS) with (31)P detection has been used for spotting of phosphoproteins after one-dimensional polyacrylamide gel electrophoresis (1-D PAGE) and membrane transfer. By analyzing a mixture of myoglobin, alpha-casein and reduced fibrinogen it is demonstrated that phosphoproteins are specifically recognized by this method. A special washing step was found to be necessary to remove phosphate noncovalently bound to proteins. The (31)P signal was found to contain quantitative information both with respect to relative and absolute amounts of phosphorus present in phosphoproteins. Normalizing the (31)P signal from a single laser ablation trace by the total amount of phosphoprotein applied to the gel, a detection limit of 5 pmol of phosphorus is estimated.