Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.440
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(1): 245-261.e17, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32649877

RESUMEN

Genomic studies of lung adenocarcinoma (LUAD) have advanced our understanding of the disease's biology and accelerated targeted therapy. However, the proteomic characteristics of LUAD remain poorly understood. We carried out a comprehensive proteomics analysis of 103 cases of LUAD in Chinese patients. Integrative analysis of proteome, phosphoproteome, transcriptome, and whole-exome sequencing data revealed cancer-associated characteristics, such as tumor-associated protein variants, distinct proteomics features, and clinical outcomes in patients at an early stage or with EGFR and TP53 mutations. Proteome-based stratification of LUAD revealed three subtypes (S-I, S-II, and S-III) related to different clinical and molecular features. Further, we nominated potential drug targets and validated the plasma protein level of HSP 90ß as a potential prognostic biomarker for LUAD in an independent cohort. Our integrative proteomics analysis enables a more comprehensive understanding of the molecular landscape of LUAD and offers an opportunity for more precise diagnosis and treatment.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , Proteómica , Adenocarcinoma del Pulmón/genética , Pueblo Asiatico/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Sistemas de Liberación de Medicamentos , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Masculino , Persona de Mediana Edad , Mutación/genética , Estadificación de Neoplasias , Fosfoproteínas/metabolismo , Análisis de Componente Principal , Pronóstico , Proteoma/metabolismo , Resultado del Tratamiento , Proteína p53 Supresora de Tumor/genética
2.
J Biol Chem ; 300(3): 105681, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272224

RESUMEN

The mechanistic target of rapamycin (mTOR) forms two distinct complexes: rapamycin-sensitive mTOR complex 1 (mTORC1) and rapamycin-insensitive mTORC2. mTORC2 primarily regulates cell survival by phosphorylating Akt, though the upstream regulation of mTORC2 remains less well-defined than that of mTORC1. In this study, we show that NOP14, a 40S ribosome biogenesis factor and a target of the mTORC1-S6K axis, plays an essential role in mTORC2 signaling. Knockdown of NOP14 led to mTORC2 inactivation and Akt destabilization. Conversely, overexpression of NOP14 stimulated mTORC2-Akt activation and enhanced cell proliferation. Fractionation and coimmunoprecipitation assays demonstrated that the mTORC2 complex was recruited to the rough endoplasmic reticulum through association with endoplasmic reticulum-bound ribosomes. In vivo, high levels of NOP14 correlated with poor prognosis in multiple cancer types. Notably, cancer cells with NOP14 high expression exhibit increased sensitivity to mTOR inhibitors, because the feedback activation of the PI3K-PDK1-Akt axis by mTORC1 inhibition was compensated by mTORC2 inhibition partly through NOP14 downregulation. In conclusion, our findings reveal a spatial regulation of mTORC2-Akt signaling and identify ribosome biogenesis as a potential biomarker for assessing rapalog response in cancer therapy.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Sirolimus , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Humanos , Línea Celular , Ribosomas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
3.
Int J Cancer ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38894502

RESUMEN

Epstein-Barr virus (EBV) is detected in nearly 100% of nonkeratinizing nasopharyngeal carcinoma (NPC) and EBV-based biomarkers are used for NPC screening in endemic regions. Immunoglobulin A (IgA) against EBV nuclear antigen 1 (EBNA1) and viral capsid antigen (VCA), and recently identified anti-BNLF2b antibodies have been shown to be the most effective screening tool; however, the screening efficacy still needs to be improved. This study developed a multiplex serological assay by testing IgA and immunoglobulin G (IgG) antibodies against representative EBV antigens that are highly transcribed in NPC and/or function crucially in viral reactivation, including BALFs, BNLF2a/b, LF1, LF2, and Zta (BZLF1). Among them, BNLF2b-IgG had the best performance distinguishing NPC patients from controls (area under the curve: 0.951, 95% confidence interval [CI]: 0.913-0.990). Antibodies to lytic antigens BALF2 and VCA were significantly higher in advanced-stage than in early-stage tumors; in contrast, antibodies to latent protein EBNA1 and early lytic antigen BNLF2b were not correlated with tumor progression. Accordingly, a novel strategy combining EBNA1-IgA and BNLF2b-IgG was proposed and validated improving the integrated discrimination by 15.8% (95% CI: 9.8%-21.7%, p < .0001) compared with the two-antibody method. Furthermore, we found EBV antibody profile in patients was more complicated compared with that in healthy carriers, in which stronger correlations between antibodies against different phases of antigens were observed. Overall, our serological assay indicated that aberrant latent infection of EBV in nasopharyngeal epithelial cells was probably a key step in NPC initiation, while more lytic protein expression might be involved in NPC progression.

4.
Small ; 20(1): e2304607, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37653591

RESUMEN

Micro/nano-robots are powerful tools for biomedical applications and are applied in disease diagnosis, tumor imaging, drug delivery, and targeted therapy. Among the various types of micro-robots, cell-based micro-robots exhibit unique properties because of their different cell sources. In combination with various actuation methods, particularly externally propelled methods, cell-based microrobots have enormous potential for biomedical applications. This review introduces recent progress and applications of cell-based micro/nano-robots. Different actuation methods for micro/nano-robots are summarized, and cell-based micro-robots with different cell templates are introduced. Furthermore, the review focuses on the combination of cell-based micro/nano-robots with precise control using different external fields. Potential challenges, further prospects, and clinical translations are also discussed.


Asunto(s)
Nanotecnología , Neoplasias , Humanos , Nanotecnología/métodos , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/diagnóstico , Neoplasias/terapia
5.
Small ; 20(23): e2307329, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38509856

RESUMEN

Single-cell arrays have emerged as a versatile method for executing single-cell manipulations across an array of biological applications. In this paper, an innovative microfluidic platform is unveiled that utilizes optoelectronic tweezers (OETs) to array and sort individual cells at a flow rate of 20 µL min-1. This platform is also adept at executing dielectrophoresis (DEP)-based, light-guided single-cell retrievals from designated micro-wells. This presents a compelling non-contact method for the rapid and straightforward sorting of cells that are hard to distinguish. Within this system, cells are individually confined to micro-wells, achieving an impressive high single-cell capture rate exceeding 91.9%. The roles of illuminating patterns, flow velocities, and applied electrical voltages are delved into in enhancing the single-cell capture rate. By integrating the OET system with the micro-well arrays, the device showcases adaptability and a plethora of functions. It can concurrently trap and segregate specific cells, guided by their dielectric signatures. Experimental results, derived from a mixed sample of HepG2 and L-O2 cells, reveal a sorting accuracy for L-O2 cells surpassing 91%. Fluorescence markers allow for the identification of sequestered, fluorescence-tagged HepG2 cells, which can subsequently be selectively released within the chip. This platform's rapidity in capturing and releasing individual cells augments its potential for future biological research and applications.


Asunto(s)
Pinzas Ópticas , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/instrumentación , Humanos , Separación Celular/instrumentación , Separación Celular/métodos , Microfluídica/métodos , Microfluídica/instrumentación
6.
Small ; 20(4): e2305903, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37715331

RESUMEN

Solar-driven interfacial evaporation is a potential water purification solution. Here, a novel regenerable hydrogel interfacial evaporator is designed with tunable water production. Such an evaporator is fabricated by readily mixing hydroxypropyl chitosan (HPCS) and dibenzaldehyde-functional poly(ethylene glycol) (DF-PEG) at ambient conditions. Dynamic Schiff base bonds bestow on the HPCS/DF-PEG hydrogel (HDH) evaporator self-adaptivity and pH responsiveness. The as-prepared HDH is enabled to spontaneously change shape to adapt to different molds, endowing the evaporator with adjustable evaporation area. The water production performance of the intelligent evaporator is first evaluated using tunable evaporation index (TEI, the tunable evaporated water mass per hour), which can be altered from 0 kg h-1 to 3.21 kg h-1 under one sun. Besides, the large-scale evaporator can be expediently fabricated by virtue of the self-adaptivity. Benefiting from the pH responsiveness, the HDH evaporator is successfully regenerated with the removal of organic dye by the liquefaction-dialysis-regeneration operations. Meanwhile, the re-created evaporator maintains the self-adaptive characteristic and almost constant water evaporation rate compared to that of the initial evaporator. Therefore, this distinctive concept provides a facile strategy to develop smart and recyclable solar-driven interfacial evaporators for flexible water purification.

7.
J Transl Med ; 22(1): 606, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951801

RESUMEN

BACKGROUND: The spatial context of tumor-infiltrating immune cells (TIICs) is important in predicting colorectal cancer (CRC) patients' clinical outcomes. However, the prognostic value of the TIIC spatial distribution is unknown. Thus, we aimed to investigate the association between TIICs in situ and patient prognosis in a large CRC sample. METHODS: We implemented multiplex immunohistochemistry staining technology in 190 CRC samples to quantify 14 TIIC subgroups in situ. To delineate the spatial relationship of TIICs to tumor cells, tissue slides were segmented into tumor cell and microenvironment compartments based on image recognition technology, and the distance between immune and tumor cells was calculated by implementing the computational pipeline phenoptr. RESULTS: MPO+ neutrophils and CD68+IDO1+ tumor-associated macrophages (TAMs) were enriched in the epithelial compartment, and myeloid lineage cells were located nearest to tumor cells. Except for CD68+CD163+ TAMs, other cells were all positively associated with favorable prognosis. The prognostic predictive power of TIICs was highly related to their distance to tumor cells. Unsupervised clustering analysis divided colorectal cancer into three subtypes with distinct prognostic outcomes, and correlation analysis revealed the synergy among B cells, CD68+IDO1+TAMs, and T lineage cells in producing an effective immune response. CONCLUSIONS: Our study suggests that the integration of spatial localization with TIIC abundance is important for comprehensive prognostic assessment.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Pronóstico , Masculino , Femenino , Persona de Mediana Edad , Microambiente Tumoral/inmunología , Análisis por Conglomerados , Anciano , Linfocitos Infiltrantes de Tumor/inmunología , Inmunohistoquímica , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Análisis Espacial
8.
J Transl Med ; 22(1): 125, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38303030

RESUMEN

BACKGROUND: Previous studies have shown that changes in the microbial community of the female urogenital tract are associated with Human papillomavirus (HPV) infection. However, research on this association was mostly focused on a single site, and there are currently few joint studies on HPV infection and multiple sites in the female urogenital tract. METHODS: We selected 102 healthy women from Yunnan Province as the research object, collected cervical exfoliation fluid, vaginal, urethral, and rectal swabs for microbial community analysis, and measured bacterial load, and related cytokine content. The link between HPV, microbiota, and inflammation was comprehensively evaluated using bioinformatics methods. FINDINGS: The impact of HPV infection on the microbial composition of different parts varies. We have identified several signature bacterial genera that respond to HPV infection in several detection sites, such as Corynebacterium, Lactobacillus, Campylobacter, and Cutibacterium have been detected in multiple sites, reflecting their potential significance in cross body sites HPV infection responses. There was a solid microbial interaction network between the cervix, vagina, and urethra. The interrelationships between inflammatory factors and different bacterial genera might also affect the immune system's response to HPV infection. INTERPRETATION: It might be an effective strategy to prevent and treat HPV infection by simultaneously understanding the correlation between the microbial changes in multiple parts of the female urogenital tract and rectum and HPV infection, and controlling the microbial network related to HPV infection in different parts.


Asunto(s)
Infecciones por Papillomavirus , Recto , Femenino , Humanos , China , Vagina/microbiología , Bacterias , ARN Ribosómico 16S , Papillomaviridae
9.
Chemistry ; 30(15): e202304134, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38205620

RESUMEN

A 14-electron ternary anionic CBe2 H5 - cluster containing a planar tetracoordinate carbon (ptC) atom is designed herein. Remarkably, it can be stabilized by only two beryllium atoms with both π-acceptor/σ-donor properties and two hydrogen atoms, which means that the conversion from planar methane (transition state) to ptC species (global minimum) requires the substitution of only two hydrogen atoms. Moreover, two ligand H atoms exhibit alternate rotation, giving rise to interesting dynamic fluxionality in this cluster. The electronic structure analysis reveals the flexible bonding positions of ligand H atoms due to C-H localized bonds, highlighting the rotational fluxionality in the cluster, and two CBe2 3c-2e delocalized bonds endow its rare 2σ/2π double aromaticity. Unprecedentedly, the fluxional process exhibits a conversion in the type of bonding (σ bond↔π bond), which is an uncommon fluxional mechanism. The cluster can be seen as an attempt to apply planar hypercoordinate carbon species to molecular motors.

10.
Chemistry ; : e202402132, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973769

RESUMEN

The design of boron-based molecular rotors stems from boron-carbon binary clusters containing multiple planar hypercoordinate carbons (phCs, such as C2B8). However, the design of boron-coordinated phCs is challenging due to boron's tendency to occupy hypercoordinate centers more than carbon. Although this challenge has been addressed, the designed clusters of interest have not exhibited dynamic fluxionality similar to that of the initial C2B8. To address this issue, we report a σ/π doubly aromatic CB2H5+ cluster, the first global minimum containing a boron-coordinated planar tetracoordinate carbon atom with dynamic fluxionality. Dynamics simulations show that two ligand H atoms exhibit alternate rotation, resulting in an intriguing dynamic fluxionality in this cluster. Electronic structure analysis reveals the flexible bonding positions of the ligand H atoms because they do not participate in π delocalized bonding nor bond to any other non-carbon atom, highlighting this rotational fluxionality. Unprecedentedly, the fluxional process involves not only the usual conversion of the number of bonding atoms, but also the type of bonding (3c π bonds ↔ 4c σ bonds), which is an uncommon fluxional mechanism. The cluster represents an effort to apply phC species to molecular machines.

11.
Mol Psychiatry ; 28(9): 3955-3965, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37798418

RESUMEN

Diabetic patients receiving the antidiabetic drug metformin have been observed to exhibit a lower prevalence of anxiety disorders, yet the precise mechanism behind this phenomenon is unclear. In our study, we found that anxiety induces a region-specific reduction in AMPK activity in the medial prefrontal cortex (mPFC). Concurrently, transgenic mice with brain-specific AMPK knockout displayed abnormal anxiety-like behaviors. Treatment with metformin or the overexpression of AMPK restored normal AMPK activity in the mPFC and mitigated social stress-induced anxiety-like behaviors. Furthermore, the specific genetic deletion of AMPK in the mPFC not only instigated anxiety in mice but also nullified the anxiolytic effects of metformin. Brain slice recordings revealed that GABAergic excitation and the resulting inhibitory inputs to mPFC pyramidal neurons were selectively diminished in stressed mice. This reduction led to an excitation-inhibition imbalance, which was effectively reversed by metformin treatment or AMPK overexpression. Moreover, the genetic deletion of AMPK in the mPFC resulted in a similar defect in GABAergic inhibitory transmission and a consequent hypo-inhibition of mPFC pyramidal neurons. We also generated a mouse model with AMPK knockout specific to GABAergic neurons. The anxiety-like behaviors in this transgenic mouse demonstrated the unique role of AMPK in the GABAergic system in relation to anxiety. Therefore, our findings suggest that the activation of AMPK in mPFC inhibitory neurons underlies the anxiolytic effects of metformin, highlighting the potential of this primary antidiabetic drug as a therapeutic option for treating anxiety disorders.


Asunto(s)
Ansiolíticos , Metformina , Humanos , Ratones , Animales , Ansiolíticos/farmacología , Proteínas Quinasas Activadas por AMP/farmacología , Metformina/farmacología , Hipoglucemiantes/farmacología , Corteza Prefrontal , Neuronas GABAérgicas
12.
Cell Commun Signal ; 22(1): 231, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637880

RESUMEN

BACKGROUND: Neurodegenerative diseases are increasingly recognized for their association with oxidative stress, which leads to progressive dysfunction and loss of neurons, manifesting in cognitive and motor impairments. This study aimed to elucidate the neuroprotective role of peroxiredoxin II (Prx II) in counteracting oxidative stress-induced mitochondrial damage, a key pathological feature of neurodegeneration. METHODS: We investigated the impact of Prx II deficiency on endoplasmic reticulum stress and mitochondrial dysfunction using HT22 cell models with knocked down and overexpressed Prx II. We observed alcohol-treated HT22 cells using transmission electron microscopy and monitored changes in the length of mitochondria-associated endoplasmic reticulum membranes and their contact with endoplasmic reticulum mitochondria contact sites (EMCSs). Additionally, RNA sequencing and bioinformatic analysis were conducted to identify the role of Prx II in regulating mitochondrial transport and the formation of EMCSs. RESULTS: Our results indicated that Prx II preserves mitochondrial integrity by facilitating the formation of EMCSs, which are essential for maintaining mitochondrial Ca2+ homeostasis and preventing mitochondria-dependent apoptosis. Further, we identified a novel regulatory axis involving Prx II, the transcription factor ATF3, and miR-181b-5p, which collectively modulate the expression of Armcx3, a protein implicated in mitochondrial transport. Our findings underscore the significance of Prx II in protecting neuronal cells from alcohol-induced oxidative damage and suggest that modulating the Prx II-ATF3-miR-181b-5p pathway may offer a promising therapeutic strategy against neurodegenerative diseases. CONCLUSIONS: This study not only expands our understanding of the cytoprotective mechanisms of Prx II but also offers necessary data for developing targeted interventions to bolster mitochondrial resilience in neurodegenerative conditions.


Asunto(s)
MicroARNs , Enfermedades Mitocondriales , Enfermedades Neurodegenerativas , Humanos , Peroxirredoxinas/genética , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Apoptosis , Estrés del Retículo Endoplásmico , MicroARNs/metabolismo
13.
Fish Shellfish Immunol ; 148: 109511, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499215

RESUMEN

Lactobacillus rhamnosus is a probiotic, which not only promotes the growth of animals, but also has anti-inflammatory effects. However, the mechanism by which Lactobacillus rhamnosus regulates intestinal immunity is not well comprehended. Hence, the study aimed to research how Lactobacillus rhamnosus affects the intestinal immunity using juvenile grass carp (Ctenopharyngodon idella) as a model. We selected 1800 juvenile grass carp for testing. They were divided into six treatments and fed with six gradients of Lactobacillus rhamnosus GCC-3 (0.0, 0.5, 1.0, 1.5, 2.0, 2.5 g/kg) for 70 days. Enteritis was subsequently induced with dextroside sodium sulfate. Results indicated that dietary Lactobacillus rhamnosus GCC-3 addition improved growth performance. Meanwhile, appropriate levels of Lactobacillus rhamnosus GCC-3 alleviated excessive inflammatory response by down-regulating the expression of TLR4 and NOD receptors, up-regulating the expression of TOR, and then down-regulating the expression of NF-κB. Additionally, appropriate Lactobacillus rhamnosus GCC-3 improved intestinal immunity by reducing pyroptosis triggered by NLRP3 inflammasome and mediated by GSDME. Furthermore, 16 S rRNA sequencing showing appropriate levels of Lactobacillus rhamnosus GCC-3 increased Lactobacillus and Bifidobacterium abundance and decreased Aeromonas abundance. These results suggest that Lactobacillus rhamnosus GCC-3 can alleviate intestinal inflammation through down-regulating NF-κB and up-regulating TOR signaling pathways, as well as by inhibiting pyroptosis.


Asunto(s)
Carpas , Enfermedades de los Peces , Lacticaseibacillus rhamnosus , Animales , FN-kappa B/metabolismo , Suplementos Dietéticos , Inmunidad Innata , Carpas/metabolismo , Dieta/veterinaria , Inflamación/veterinaria , Alimentación Animal/análisis , Proteínas de Peces/genética
14.
Fish Shellfish Immunol ; 151: 109690, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866347

RESUMEN

Leucine is an essential amino acid for fish. The ability of leucine to resist stress in fish has not been reported. Nitrite is a common pollutant in the aquatic environment. Therefore, we investigated the effects of dietary leucine on growth performance and nitrite-induced liver damage, mitochondrial dysfunction, autophagy, and apoptosis for sub-adult grass carp. A total of 450 grass carp (615.91 ± 1.15 g) were selected and randomly placed into 18 net cages. The leucine contents of the six diets were 2.91, 5.90, 8.92, 11.91, 14.93, and 17.92 g/kg, respectively. After a 9-week feeding trial, the nitrite exposure experiment was set up for 96 h. These results indicated that dietary leucine significantly promoted FW, WG, PWG, and SGR of sub-adult grass carp (P < 0.05). Appropriate levels of dietary leucine (11.91-17.92 g/kg) decreased the activities of serum parameters (glucose, cortisol, and methemoglobin contents, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and lactate dehydrogenase), the contents of reactive oxygen species (ROS), nitric oxide (NO) and peroxynitrite (ONOO-). In addition, appropriate levels of dietary leucine (11.91-17.92 g/kg) increased the mRNA levels of mitochondrial biogenesis genes (PGC-1α, Nrf1/2, TFAM), fusion-related genes (Opa1, Mfn1/2) (P < 0.05), and decreased the mRNA levels of caspase 3, caspase 8, caspase 9, fission-related gene (Drp1), mitophagy-related genes (Pink1, Parkin) and autophagy-related genes (Beclin1, Ulk1, Atg5, Atg7, Atg12) (P < 0.05). Appropriate levels of dietary leucine (8.92-17.92 g/kg) also increased the protein levels of AMP-activated protein kinase (AMPK), prostacyclin (p62) and decreased the protein levels of protein light chain 3 (LC3), E3 ubiquitin ligase (Parkin), and Cytochrome c (Cytc). Appropriate levels of leucine (8.92-17.92 g/kg) could promote growth performance and alleviate nitrite-induced mitochondrial dysfunction, autophagy, apoptosis for sub-adult grass carp. Based on quadratic regression analysis of PWG and serum GPT activity, dietary leucine requirements of sub-adult grass carp were recommended to be 12.47 g/kg diet and 12.55 g/kg diet, respectively.

15.
Fish Shellfish Immunol ; 148: 109503, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479567

RESUMEN

Prohibitins (PHBs) are ubiquitously expressed conserved proteins in eukaryotes that are associated with apoptosis, cancer formation, aging, stress responses and cell proliferation. However, the function of the PHBs in immune regulation has largely not been determined. In the present study, we identified PHB2 in the red swamp crayfish Procambarus clarkii. PHB2 was found to be widely distributed in several tissues, and its expression was significantly upregulated by white spot syndrome virus (WSSV) challenge. PHB2 significantly reduced the amount of WSSV in crayfish and the mortality of WSSV-infected crayfish. Here, we observed that PHB2 promotes the nuclear translocation of STAT by binding to STAT. After blocking PHB2 or STAT with antibodies or interfering with PHB2 or STAT, the expression levels of the antiviral genes ß-thymosin (PcThy-4) and crustin2 (Cru2) decreased. The gene sequence of PHB2 was analyzed and found to contain a nuclear introgression sequence (NIS). After in vivo injection of PHB2 with deletion of NIS (rΔNIS-PHB2), the nuclear translocation of STAT did not change significantly compared to that in the control group. These results suggest that PHB2 promoted the nuclear translocation of STAT through NIS and mediated the expression of antiviral proteins to inhibit WSSV infection.


Asunto(s)
Timosina , Virus del Síndrome de la Mancha Blanca 1 , Animales , Virus del Síndrome de la Mancha Blanca 1/fisiología , Astacoidea , Alimentos Marinos , Antivirales
16.
Nicotine Tob Res ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39021120

RESUMEN

INTRODUCTION: We evaluated the impact of heating conventional cigarettes with a novel heated tobacco product (HTP) device on biomarkers and cigarette use patterns in Chinese adult smokers unwilling to quit smoking. METHODS: In this pilot randomized controlled trial, 50 eligible participants were allocated to either Control group (smoking conventional cigarettes) or HTP device group (switching to using heated conventional cigarettes by the HTP device). Participants in the HTP device group went through a 2-day run-in period then used heated conventional cigarettes exclusively for 5 days, followed by flexible use for 14 days. Five biomarkers of exposure (BoEs) were measured at baseline and on Day 7. Thirteen biomarkers of biological effect (BoBEs) were measured at baseline and on Day 21. Safety, daily cigarette consumption, craving, withdrawal symptoms, and device acceptability, were assessed. RESULTS: BoE levels decreased by 26.4 % to 71.4% from baseline in the HTP device group, while BoBE levels did not significantly change in either group. In the HTP group, 56% exclusively used heated conventional cigarettes during the flexible use period, experiencing reduced cravings and withdrawal symptoms, while dual users consumed more cigarettes. Mild to moderate device-related reactions were reported in 36% of users. Satisfaction, taste, and harm reduction belief scores averaged 7.4, 6.6, and 8.7 (out of 10), respectively. CONCLUSIONS: Switching to heated cigarettes with the HTP device may reduce short-term exposure to smoke toxicants. However, it can lead to increased tobacco use among dual users. Further investigation is needed to confirm these preliminary findings. IMPLICATIONS: This study is the first to evaluate the impact of heating conventional cigarettes with a novel heated tobacco product (HTP) device on health-related biomarkers and cigarette use patterns among Chinese adult smokers. This novel HTP device can directly heat conventional cigarettes without the necessity for specifically designed tobacco products, avoiding potential additive risks of traditional HTPs. If the results of this study could be further verified by randomized controlled clinical trials with larger sample sizes, this novel HTP device could serve as a short-term harm reduction alternative for smokers unwilling to quit.

17.
Acta Pharmacol Sin ; 45(1): 36-51, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37684382

RESUMEN

The gut-brain axis plays a vital role in Parkinson's disease (PD). The mechanisms of gut-brain transmission mainly focus on α-synuclein deposition, intestinal inflammation and microbiota function. A few studies have shown the trigger of PD pathology in the gut. α-Synuclein is highly conserved in food products, which was able to form ß-folded aggregates and to infect the intestinal mucosa. In this study we investigated whether α-synuclein-preformed fibril (PFF) exposure could modulate the intestinal environment and induce rodent models replicating PD pathology. We first showed that PFF could be internalized into co-cultured Caco-2/HT29/Raji b cells in vitro. Furthermore, we demonstrated that PFF perfusion caused the intestinal inflammation and activation of enteric glial cells in an ex vivo intestinal organ culture and in an in vivo intestinal mouse coloclysis model. Moreover, we found that PFF exposure through regular coloclysis induced PD pathology in wild-type (WT) and A53T α-synuclein transgenic mice with various phenotypes. Particularly in A53T mice, PFF induced significant behavioral disorders, intestinal inflammation, α-synuclein deposition, microbiota dysbiosis, glial activation as well as degeneration of dopaminergic neurons in the substantia nigra. In WT mice, however, the PFF induced only mild behavioral abnormalities, intestinal inflammation, α-synuclein deposition, and glial activation, without significant changes in microbiota and dopaminergic neurons. Our results reveal the possibility of α-synuclein aggregates binding to the intestinal mucosa and modeling PD in mice. This study may shed light on the investigation and early intervention of the gut-origin hypothesis in neurodegenerative diseases.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Ratones , Animales , alfa-Sinucleína/metabolismo , Células CACO-2 , Trastornos Parkinsonianos/metabolismo , Enfermedad de Parkinson/metabolismo , Ratones Transgénicos , Neuronas Dopaminérgicas/metabolismo , Inflamación/metabolismo
18.
BMC Vet Res ; 20(1): 209, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760785

RESUMEN

BACKGROUND: Bovine coronavirus (BCoV) is implicated in severe diarrhea in calves and contributes to the bovine respiratory disease complex; it shares a close relationship with human coronavirus. Similar to other coronaviruses, remarkable variability was found in the genome and biology of the BCoV. In 2022, samples of feces were collected from a cattle farm. A virus was isolated from 7-day-old newborn calves. In this study, we present the genetic characteristics of a new BCoV isolate. The complete genomic, spike protein, and nucleocapsid protein gene sequences of the BCoV strain, along with those of other coronaviruses, were obtained from the GenBank database. Genetic analysis was conducted using MEGA7.0 and the Neighbor-Joining (NJ) method. The reference strains' related genes were retrieved from GenBank for comparison and analysis using DNAMAN. RESULTS: The phylogenetic tree and whole genome consistency analysis showed that it belonged to the GIIb subgroup, which is epidemic in Asia and America, and was quite similar to the Chinese strains in the same cluster. Significantly, the S gene was highly consistent with QH1 (MH810151.1) isolated from yak. This suggests that the strain may have originated from interspecies transmission involving mutations of wild strains. The N gene was conserved and showed high sequence identity with the epidemic strains in China and the USA. CONCLUSIONS: Genetic characterization suggests that the isolated strain could be a new mutant from a wild-type lineage, which is in the same cluster as most Chinese epidemic strains but on a new branch.


Asunto(s)
Enfermedades de los Bovinos , Infecciones por Coronavirus , Coronavirus Bovino , Genoma Viral , Filogenia , Animales , Bovinos , Coronavirus Bovino/genética , Coronavirus Bovino/aislamiento & purificación , China/epidemiología , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/epidemiología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/epidemiología , Heces/virología , Glicoproteína de la Espiga del Coronavirus/genética , Animales Recién Nacidos
19.
J Nanobiotechnology ; 22(1): 298, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38811968

RESUMEN

BACKGROUND: Advanced hepatocellular carcinoma (HCC) can be treated with sorafenib, which is the primary choice for targeted therapy. Nevertheless, the effectiveness of sorafenib is greatly restricted due to resistance. Research has shown that exosomes and circular RNAs play a vital role in the cancer's malignant advancement. However, the significance of exosomal circular RNAs in the development of resistance to sorafenib in HCC remains uncertain. METHODS: Ultracentrifugation was utilized to isolate exosomes (Exo-SR) from the sorafenib-resistant HCC cells' culture medium. Transcriptome sequencing and differential expression gene analysis were used to identify the targets of Exo-SR action in HCC cells. To identify the targets of Exo-SR action in HCC cells, transcriptome sequencing and analysis of differential expression genes were employed. To evaluate the impact of exosomal circUPF2 on resistance to sorafenib in HCC, experiments involving gain-of-function and loss-of-function were conducted. RNA pull-down assays and mass spectrometry analysis were performed to identify the RNA-binding proteins interacting with circUPF2. RNA immunoprecipitation (RIP), RNA pull-down, electrophoretic mobility shift assay (EMSA), immunofluorescence (IF) -fluorescence in situ hybridization (FISH), and rescue assays were used to validate the interactions among circUPF2, IGF2BP2 and SLC7A11. Finally, a tumor xenograft assay was used to examine the biological functions and underlying mechanisms of Exo-SR and circUPF2 in vivo. RESULTS: A novel exosomal circRNA, circUPF2, was identified and revealed to be significantly enriched in Exo-SR. Exosomes with enriched circUPF2 enhanced sorafenib resistance by promoting SLC7A11 expression and suppressing ferroptosis in HCC cells. Mechanistically, circUPF2 acts as a framework to enhance the creation of the circUPF2-IGF2BP2-SLC7A11 ternary complex contributing to the stabilization of SLC7A11 mRNA. Consequently, exosomal circUPF2 promotes SLC7A11 expression and enhances the function of system Xc- in HCC cells, leading to decreased sensitivity to ferroptosis and resistance to sorafenib. CONCLUSIONS: The resistance to sorafenib in HCC is facilitated by the exosomal circUPF2, which promotes the formation of the circUPF2-IGF2BP2-SLC7A11 ternary complex and increases the stability of SLC7A11 mRNA. Focusing on exosomal circUPF2 could potentially be an innovative approach for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Resistencia a Antineoplásicos , Exosomas , Ferroptosis , Neoplasias Hepáticas , ARN Circular , Proteínas de Unión al ARN , Sorafenib , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Exosomas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Sorafenib/farmacología , ARN Circular/genética , ARN Circular/metabolismo , Ferroptosis/efectos de los fármacos , Línea Celular Tumoral , Animales , Ratones , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Ratones Desnudos , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica , Ratones Endogámicos BALB C
20.
Appl Opt ; 63(4): 982-989, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437395

RESUMEN

In underwater wireless optical communication (UWOC), vortex beams carrying orbital angular momentum (OAM) can improve channel capacity but are vulnerable to oceanic turbulence (OT), leading to recognition errors. To mitigate this issue, we propose what we believe to be a novel method that combines the Gerchberg-Saxton (GS) algorithm-based recovery with convolutional neural network (CNN)-based recognition (GS-CNN). Our experimental results demonstrate that superposed Laguerre-Gaussian (LG) beams with small topological charge are ideal information carriers, and the GS-CNN remains effective even when OT strength C n2 is high up to 10-11 K 2 m -2/3. Furthermore, we use 16 kinds of LG beams to transmit a 256-grayscale digital image, giving rise to an increase in recognition accuracy from 0.75 to 0.93 and a decrease in bit error ratio from 3.98×10-2 to 6.52×10-3 compared to using the CNN alone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA