Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Appl Environ Microbiol ; 88(9): e0031222, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35435714

RESUMEN

The Gram-positive bacterium Paenibacillus taichungensis NC1 was isolated from the Zijin gold-copper mine and shown to display high resistance to arsenic (MICs of 10 mM for arsenite in minimal medium). Genome sequencing indicated the presence of a number of potential arsenic resistance determinants in NC1. Global transcriptomic analysis under arsenic stress showed that NC1 not only directly upregulated genes in an arsenic resistance operon but also responded to arsenic toxicity by increasing the expression of genes encoding antioxidant functions, such as cat, perR, and gpx. In addition, two highly expressed genes, marR and arsV, encoding a putative flavin-dependent monooxygenase and located adjacent to the ars resistance operon, were highly induced by As(III) exposure and conferred resistance to arsenic and antimony compounds. Interestingly, the zinc scarcity response was induced under exposure to high concentrations of arsenite, and genes responsible for iron uptake were downregulated, possibly to cope with oxidative stress associated with As toxicity. IMPORTANCE Microbes have the ability to adapt and respond to a variety of conditions. To better understand these processes, we isolated the arsenic-resistant Gram-positive bacterium Paenibacillus taichungensis NC1 from a gold-copper mine. The transcriptome responding to arsenite exposure showed induction of not only genes encoding arsenic resistance determinants but also genes involved in the zinc scarcity response. In addition, many genes encoding functions involved in iron uptake were downregulated. These results help to understand how bacteria integrate specific responses to arsenite exposure with broader physiological responses.


Asunto(s)
Arsénico , Arsenitos , Arsénico/metabolismo , Arsénico/toxicidad , Arsenitos/metabolismo , Arsenitos/toxicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cobre , Oro , Hierro , Operón , Paenibacillus , Zinc
2.
Ecotoxicol Environ Saf ; 240: 113700, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35636238

RESUMEN

Fe biofortification and Cd mitigation in rice is essential for human health, thus the effects of fertilization with Fe on Cd uptake and distribution in rice need to be comprehensively studied. In this study, we investigated the roles of root iron (Fe)/manganese (Mn) plaques, root cell wall, organic acid, and expressions of Cd-transport related genes in restricting Cd uptake and translocation. The rice plants were exposed to 1 µM CdCl2 with or without the addition of three doses of Fe at 5, 50, and 500 µM EDTA-Na2Fe. The results showed that increasing supply of Fe remarkably reduced Cd accumulation in the shoots, mainly because of inhibited translocation of Cd from roots to shoots. As compared to 5 µM Fe treatment, 500 µM Fe significantly increased the ionic soluble pectin (ISP) content and decreased citric acid (CA) in the roots, thereby providing more Cd-binding sites in the cell wall of roots and reducing the mobility of Cd in xylem. Plant Fe status-mediated CA act as the main chelator for Cd mobilization, rather than through decreasing the pH. However, the plants supplied with low Fe or excess Fe facilitated the uptake of Cd in rice roots, as low Fe up-regulated the expression of Cd-transport related genes and excess Fe enhanced Cd enrichment on the root by iron plaque. Importantly, soil fertilization with Fe strongly reduced Cd accumulation in rice grain. Thus, optimizing the soil environmental Fe could effectively reduce Cd accumulation in the shoots by immobilizing Cd in the roots.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/metabolismo , Pared Celular/metabolismo , Quelantes/metabolismo , Quelantes/farmacología , Humanos , Hierro/química , Oryza/metabolismo , Raíces de Plantas/metabolismo , Suelo , Contaminantes del Suelo/análisis , Xilema/metabolismo
3.
Int J Mol Sci ; 23(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35628430

RESUMEN

Arsenic (As), distributed widely in the natural environment, is a toxic substance which can severely impair the normal functions in living cells. Research on the genetic determinants conferring functions in arsenic resistance and metabolism is of great importance for remediating arsenic-contaminated environments. Many organisms, including bacteria, have developed various strategies to tolerate arsenic, by either detoxifying this harmful element or utilizing it for energy generation. More and more new arsenic resistance (ars) determinants have been identified to be conferring resistance to diverse arsenic compounds and encoded in ars operons. There is a hazard in mobilizing arsenic during gold-mining activities due to gold- and arsenic-bearing minerals coexisting. In this study, we isolated 8 gold enrichment strains from the Zijin gold and copper mine (Longyan, Fujian Province, China) wastewater treatment site soil, at an altitude of 192 m. We identified two Brevundimonas nasdae strains, Au-Bre29 and Au-Bre30, among these eight strains, having a high minimum inhibitory concentration (MIC) for As(III). These two strains contained the same ars operons but displayed differences regarding secretion of extra-polymeric substances (EPS) upon arsenite (As(III)) stress. B. nasdae Au-Bre29 contained one extra plasmid but without harboring any additional ars genes compared to B. nasdae Au-Bre30. We optimized the growth conditions for strains Au-Bre29 and Au-Bre30. Au-Bre30 was able to tolerate both a lower pH and slightly higher concentrations of NaCl. We also identified folE, a folate synthesis gene, in the ars operon of these two strains. In most organisms, folate synthesis begins with a FolE (GTP-Cyclohydrolase I)-type enzyme, and the corresponding gene is typically designated folE (in bacteria) or gch1 (in mammals). Heterologous expression of folE, cloned from B. nasdae Au-Bre30, in the arsenic-hypersensitive strain Escherichia coli AW3110, conferred resistance to As(III), arsenate (As(V)), trivalent roxarsone (Rox(III)), pentavalent roxarsone (Rox(V)), trivalent antimonite (Sb(III)), and pentavalent antimonate (Sb(V)), indicating that folate biosynthesis is a target of arsenite toxicity and increased production of folate confers increased resistance to oxyanions. Genes encoding Acr3 and ArsH were shown to confer resistance to As(III), Rox(III), Sb(III), and Sb(V), and ArsH also conferred resistance to As(V). Acr3 did not confer resistance to As(V) and Rox(V), while ArsH did not confer resistance to Rox(V).


Asunto(s)
Arsénico , Arsenitos , Caulobacteraceae , Roxarsona , Arsénico/metabolismo , Arsenitos/toxicidad , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caulobacteraceae/metabolismo , Escherichia coli/metabolismo , Ácido Fólico/metabolismo , Oro/metabolismo , Roxarsona/metabolismo , Roxarsona/farmacología
4.
Appl Environ Microbiol ; 87(24): e0158821, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34613763

RESUMEN

In this study, comprehensive analyses were performed to determine the function of an atypical MarR homolog in Achromobacter sp. strain As-55. Genomic analyses of Achromobacter sp. As-55 showed that this marR is located adjacent to an arsV gene. ArsV is a flavin-dependent monooxygenase that confers resistance to the antibiotic methylarsenite [MAs(III)], the organoarsenic compound roxarsone(III) [Rox(III)], and the inorganic antimonite [Sb(III)]. Similar marR genes are widely distributed in arsenic-resistant bacteria. Phylogenetic analyses showed that these MarRs are found in operons predicted to be involved in resistance to inorganic and organic arsenic species, so the subfamily was named MarRars. MarRars orthologs have three conserved cysteine residues, which are Cys36, Cys37, and Cys157 in Achromobacter sp. As-55, mutation of which compromises the response to MAs(III)/Sb(III). GFP-fluorescent biosensor assays show that AdMarRars (MarR protein of Achromobacter deleyi As-55) responds to trivalent As(III) and Sb(III) but not to pentavalent As(V) or Sb(V). The results of RT-qPCR assays show that arsV is expressed constitutively in a marR deletion mutant, indicating that marR represses transcription of arsV. Moreover, electrophoretic mobility shift assays (EMSAs) demonstrate that AdMarRars binds to the promoters of both marR and arsV in the absence of ligands and that DNA binding is relieved upon binding of As(III) and Sb(III). Our results demonstrate that AdMarRars is a novel As(III)/Sb(III)-responsive transcriptional repressor that controls expression of arsV, which confers resistance to MAs(III), Rox(III), and Sb(III). AdMarRars and its orthologs form a subfamily of MarR proteins that regulate genes conferring resistance to arsenic-containing antibiotics. IMPORTANCE In this study, a MarR family member, AdMarRars was shown to regulate the arsV gene, which confers resistance to arsenic-containing antibiotics. It is a founding member of a distinct subfamily that we refer to as MarRars, regulating genes conferring resistance to arsenic and antimony antibiotic compounds. AdMarRars was shown to be a repressor containing conserved cysteine residues that are required to bind As(III) and Sb(III), leading to a conformational change and subsequent derepression. Here we show that members of the MarR family are involved in regulating arsenic-containing compounds.


Asunto(s)
Achromobacter/genética , Arsénico , Arsenicales , Genes Bacterianos , Achromobacter/efectos de los fármacos , Antibacterianos , Arsénico/farmacología , Arsenicales/farmacología , Cisteína , Farmacorresistencia Bacteriana , Familia de Multigenes , Filogenia , Roxarsona/farmacología
5.
Ecotoxicol Environ Saf ; 211: 111914, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33454593

RESUMEN

Bioremediation of Cd contaminated environments can be assisted by plant-growth-promoting bacteria (PGPB) enabling plant growth in these sites. Here a gram-negative Burkholderia contaminans ZCC was isolated from mining soil at a copper-gold mine. When exposed to Cd(II), ZCC displayed high Cd resistance and the minimal inhibitory concentration was 7 mM in LB medium. Complete genome analysis uncovered B. contaminans ZCC contained 3 chromosomes and 2 plasmids. One of these plasmids was shown to contain a multitude of heavy metal resistance determinants including genes encoding a putative Cd-translocating PIB-type ATPase and an RND-type related to the Czc-system. These additional heavy metal resistance determinants are likely responsible for the increased resistance to Cd(II) and other heavy metals in comparison to other strains of B. contaminans. B. contaminans ZCC also displayed PGPB traits such as 1-aminocyclopropane-1-carboxylate deaminase activity, siderophore production, organic and inorganic phosphate solubilization and indole acetic acid production. Moreover, the properties and Cd(II) binding characteristics of extracellular polymeric substances was investigated. ZCC was able to induce extracellular polymeric substances production in response to Cd and was shown to be chemically coordinated to Cd(II). It could promote the growth of soybean in the presence of elevated concentrations of Cd(II). This work will help to better understand processes important in bioremediation of Cd-contaminated environment.


Asunto(s)
Adaptación Fisiológica/fisiología , Burkholderia/fisiología , Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Biodegradación Ambiental , Cadmio/metabolismo , Ácidos Indolacéticos , Metales Pesados/análisis , Minería , Desarrollo de la Planta , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis , Glycine max/metabolismo
6.
Ecotoxicol Environ Saf ; 184: 109593, 2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31479760

RESUMEN

Leaf vegetables have strong capabilities to take up cadmium (Cd) compared to other vegetable varieties. Until now, the differences in Cd uptake and accumulation by leaf vegetables from different families and genera and the related health risks were unknown. To remedy this, we studied 71 leaf vegetables (multiple genotypes within 17 categories of vegetables) in soil cultivation experiments (3 Cd treatment levels). Results showed that at 2.12 mg kg-1 Cd treatment, the dry weight of only five genotypic varieties from the families Brassicaceae and Asteraceae significantly decreased compared to the control, suggesting their weak Cd tolerances. Vegetables from the Brassicaceae, Asteraceae, Apiaceae, and Convolvulaceae families had stronger Cd absorption capabilities, whereas those from the Liliaceae and Amaranthaceae families had weaker ones. Cluster analysis found that the 17 vegetable categories could be divided into three groups: vegetables with high Cd accumulation capabilities were Lactuca sativa L.var. ramosa Hort. and Lactuca sativa var. longifoliaf. Lam. Vegetables with moderate Cd accumulation capabilities were bok choy, napa cabbage, choy sum, leaf mustard, Lactuca sativa L., Sonchus oleraceus L., celery, coriander, and water spinach. Vegetables with low Cd accumulation capabilities were cabbage, crown daisy, garlic chive, Allium ascalonicum, Gynura cusimbua, and edible amaranth. Estimated daily intake (EDI) and target hazard quotient (THQ) analysis results showed that 100% genotypes of vegetables from the Apiaceae and Convolvulaceae families had health risks; 100% genotypes of Lactuca sativa L., Sonchus oleraceus L., Lactuca sativa L. var. ramosa Hort., and Lactuca sativa var. longifoliaf. Lam from the Asteraceae family carried high risks. Of vegetables in the Brassicaceae family, 42.9% showed risks. Vegetables from the Amaranthaceae and Liliaceae families, Gynura cusimbua and crown daisy from the Asteraceae family, and cabbage from the Brassicaceae family all displayed relatively low risks (all 100%).


Asunto(s)
Cadmio/metabolismo , Contaminación de Alimentos , Contaminantes del Suelo/metabolismo , Verduras/metabolismo , Cadmio/análisis , Cadmio/toxicidad , Humanos , Hojas de la Planta/clasificación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Medición de Riesgo , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Especificidad de la Especie , Estrés Fisiológico/efectos de los fármacos , Verduras/clasificación , Verduras/efectos de los fármacos
7.
Appl Opt ; 56(19): 5501-5510, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29047508

RESUMEN

The theoretical formulation based on rigorous transmission-line networks is developed for a general mode conversion problem and lays the groundwork for a simpler yet more efficient graphical design approach for hybrid plasmonic mode converters (HPMCs). The concurrence of co- and cross-polarization conversion to and among higher-order photonic and HP modes followed by subsequent power redistributions and losses over the course of the HPMC can lead to performance degradation and largely determines the silicon core thickness. Using gradient ascent of the TM polarization fraction incorporated with modal index contours sets critical perturbation parameters for required transverse structural asymmetry. Polarization reversal estimates are shown to be practically applicable for about 60% of the total device length. The mode conversion efficiency (MCE), insertion loss (IL), and the polarization conversion efficiency of the proposed HPMC (<7×0.4 µm2) at λ0=1550 nm are 90.04%, 0.4691 dB, and 99.96%, respectively. The 85%-bandwidth of the MCE is 135 nm, while the IL stays below 0.5 dB over a 68-nm spectral range.

8.
Ecotoxicol Environ Saf ; 142: 207-215, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28411516

RESUMEN

This study was conducted to investigate the possibility of using a combined technology to synchronously reduce As and Cd accumulation in the edible parts of Brassica campestris. The results showed that a foliar application of selenite (Se) and silicon (Si) combined with soil ameliorants (including Ca-Mg-P fertilizer, sodium silicate and red mud) showed limited effects on the growth of B. campestris. The As concentration in the leaves of B. campestris in all treatments was below the Chinese safety standard. When sodium silicate and Ca-Mg-P fertilizer were added to the soil, the additional foliar application of Se and Si could in some cases help further reduce the concentrations of As and Cd in the leaves of B. campestris. However, when red mud was applied to the soil, the foliar application of Se and Si enhanced the Cd concentration in the leaves of B. campestris. In most cases, high levels of soil ameliorants plus foliar application of Se and Si significantly enhanced the As concentrations in both the soil solution and the roots of B. campestris but reduced the soil solution Cd concentration and the leaf As concentration. Most of the treatments reduced the thiobarbituric acid reactive substances (TBARS) concentration in the leaves of B. campestris, and the foliar application of Se and Si helped the soil ameliorants alleviate the oxidative stress resulting from As and Cd exposure. In this study, several treatments significantly increased the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX). However, the enzymes peroxidase (POD) and catalase (CAT) were not induced by most treatments. In summary, the combined treatment of 1gkg-1 Ca-Mg-P fertilizer plus foliar spraying 2mmolL-1 sodium selenite was most effective in reducing the Cd concentration and a rather strong ability to reduce the As concentration and trigger the activities of SOD and APX in the leaves of B. campestris.


Asunto(s)
Antioxidantes/metabolismo , Arsenicales/análisis , Brassica/metabolismo , Cadmio/análisis , Fertilizantes/análisis , Ácido Selenioso/farmacología , Silicatos/farmacología , Contaminantes del Suelo/análisis , Arsenicales/metabolismo , Ascorbato Peroxidasas/metabolismo , Brassica/química , Brassica/efectos de los fármacos , Brassica/crecimiento & desarrollo , Cadmio/metabolismo , Catalasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peroxidasas/metabolismo , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Suelo/química , Suelo/normas , Contaminantes del Suelo/metabolismo , Superóxido Dismutasa/metabolismo
9.
Ecotoxicol Environ Saf ; 124: 239-247, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26546906

RESUMEN

The economical, environmental friendly and efficient materials to remediate the pollution with multiple heavy metals and metalloids are scarce. Silkworm excrement (SE) and mushroom dregs (MD) are two types of agricultural wastes, and they are widely used to improve the soil fertility in many regions of China. A pot experiment with sixteen treatments was set up to assess the possibility of using SE and MD to stabilize heavy metals and metalloids and reduce their uptake in pakchoi cultivated in slightly contaminated soils with arsenic (As), cadmium (Cd), lead (Pb) and zinc (Zn). The results showed that the single addition of SE obviously stimulated the growth of pakchoi, reduced the contents of all tested heavy metals and metalloids in the edible part of pakchoi and availability of Zn and Cd in soil. The single MD treatment showed an inferior ability to enhance the growth and reduce the contents of heavy metals and metalloids in the edible part of pakchoi. The combined utilization of SE and MD appeared not to show better effects than their individual treatment when using them to remediate this contaminated soil. Some potential mechanisms on the stimulation on pakchoi growth and decreasing the accumulation of heavy metals and metalloids in pakchoi subjected to SE were suggested, including: (1) enhancing soil pH to impact the availability of heavy metals and metalloids; (2) improve the fertility of soil; (3) sulfhydryl groups of organic materials in SE play a role in conjugating heavy metals and metalloids to affect their availability in soil; and (4) stimulating the growth of pakchoi so as to show a "dilution effect" of heavy metals and metalloids.


Asunto(s)
Restauración y Remediación Ambiental , Fertilizantes , Metales Pesados/metabolismo , Contaminantes del Suelo/metabolismo , Verduras/metabolismo , Agaricales , Agricultura , Animales , Arsénico/metabolismo , Biomasa , Bombyx , Cadmio/metabolismo , China , Contaminación Ambiental , Heces , Plomo/metabolismo , Metaloides/metabolismo , Suelo/química , Verduras/crecimiento & desarrollo , Zinc/metabolismo
10.
J Environ Manage ; 170: 116-22, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26807822

RESUMEN

Paddy soils in many regions of China have been seriously polluted by multiple heavy metals or metalloids, such as arsenic (As), cadmium (Cd) and lead (Pb). In order to ensure the safety of food and take full advantage of the limited farmland resources of China, exploring an effective technology to repair contaminated soils is urgent and necessary. In this study, three technologies were employed, including variety screening, water management and foliage dressing, to assess their abilities to reduce the accumulation of Cd and As in the grains of different rice varieties, and meanwhile monitor the related yields. The results of variety screening under insufficient field drying condition showed that the As and Cd contents in the grains of only four varieties [Fengliangyouxiang 1 (P6), Zhongzheyou 8 (P7), Guangliangyou 1128 (P10), Y-liangyou 696 (P11)] did not exceed their individual national standard. P6 gained a relatively high grain yield but accumulated less As and Cd in the grains despite of the relatively high As and Cd concentrations in the rhizosphere soil. However, long-playing field drying in water management trial significantly increased Cd but decreased As content in the grains of all tested three varieties including P6, suggesting an important role of water supply in controlling the accumulation of grain As and Cd. Selenium (Se) showed a stronger ability than silicon (Si) to reduce As and Cd accumulation in the grains of Fengliangyou 4 (P2) and Teyou 524 (P13), and keep the yields. The results of this study suggest that combined application of water management and foliage dressing may be an efficient way to control As and Cd accumulation in the grains of paddy rice exposing to As- and Cd-contaminated soils.


Asunto(s)
Arsénico/análisis , Cadmio/análisis , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Suelo/química , Agricultura , China , Monitoreo del Ambiente , Humanos , Oryza/química , Movimientos del Agua
11.
J Environ Manage ; 183(Pt 3): 733-741, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27641653

RESUMEN

Most current technologies can hardly simultaneously reduce the accumulation of arsenic (As) and cadmium (Cd) in crops. In this study, root application of selenite [Se (IV)] and selenate [Se (VI)] was used to assess their abilities to reduce the accumulation of As and Cd, and maintain the yields and quality of rice grains. The results show that Se (IV) showed a weaker ability than Se (VI) to maintain the grain contents of many essential elements, but a stronger ability to decrease As and Cd contents in rice grains, and maintain the yields, photosynthesis rate and stomatal conductance, and increase the grain contents of several amino acids (AAs), total Se, selenomethionine (SeMet) and selenocysteine (SeCys). The best outcomes resulted at a relatively high application of 5 mg kg-1 Se (IV), reflecting in the highest total Se, SeCys and SeMet content (14.95, 118.70 and 864.73 µg kg-1, respectively) in the grains, highest grain yield, and lowest grain As and Cd content (0.36 and 0.07 mg kg-1, respectively). In addition, the application of 1-5 mg kg-1 Se (IV) seemed to facilitate the formation of SeMet in the grains, but most inorganic Se in the grains were transformed into SeCys and SeMet under Se (VI) treatments. This study provides a new idea to resolve the problems of high accumulation of As and Cd in rice grains and insufficiency of Se intake in China.


Asunto(s)
Arsénico/farmacocinética , Cadmio/farmacocinética , Oryza/efectos de los fármacos , Ácido Selenioso/farmacología , Contaminantes del Suelo/farmacocinética , Agricultura/métodos , Aminoácidos/metabolismo , Arsénico/toxicidad , Cadmio/toxicidad , China , Productos Agrícolas/metabolismo , Grano Comestible/metabolismo , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Ácido Selénico/farmacología
12.
J Environ Manage ; 141: 1-8, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24762567

RESUMEN

This study was conducted to investigate the use of elevated carbon dioxide (CO2), plant growth-promoting rhizobacterium Burkholderia sp. D54 (PGPR) and ethylenediaminetetraacetic acid (EDTA) to enhance the phytoextraction efficiency of ryegrass in response to multiple heavy metal (or metalloid)-polluted soil containing zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb). All of the single or combined CO2, PGPR and EDTA treatments promoted ryegrass growth. The stimulation of ryegrass growth by CO2 and PGPR could primarily be attributed to the regulation of photosynthesis rather than decreased levels of Zn, As and Cd in the shoots. Most treatments seemed to reduce the Zn, As and Cd contents in the shoots, which might be associated with enhanced shoot biomass, thus causing a "dilution effect" regarding their levels. The combined treatments seemed to perform better than single treatments in removing Zn, As, Cd and Pb from soil, judging from the larger biomass and relatively higher total amounts (TAs) of Zn, As, Cd and Pb in both the shoots and roots. Therefore, we suggest that the CO2 plus PGPR treatment will be suitable for removing Zn, As, Cd and Pb from heavy metal (or metalloid)-polluted soils using ryegrass as a phytoremediation material.


Asunto(s)
Burkholderia , Dióxido de Carbono/farmacología , Ácido Edético/farmacología , Lolium/metabolismo , Rizoma/microbiología , Contaminantes del Suelo/metabolismo , Arsénico/metabolismo , Biodegradación Ambiental , Biomasa , Quelantes/farmacología , Lolium/efectos de los fármacos , Lolium/crecimiento & desarrollo , Lolium/microbiología , Metales Pesados/metabolismo , Desarrollo de la Planta , Raíces de Plantas/química , Rizoma/efectos de los fármacos , Rizoma/crecimiento & desarrollo , Rizoma/metabolismo
13.
Med Biol Eng Comput ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727760

RESUMEN

Medical image classification plays a pivotal role within the field of medicine. Existing models predominantly rely on supervised learning methods, which necessitate large volumes of labeled data for effective training. However, acquiring and annotating medical image data is both an expensive and time-consuming endeavor. In contrast, semi-supervised learning methods offer a promising approach by harnessing limited labeled data alongside abundant unlabeled data to enhance the performance of medical image classification. Nonetheless, current methods often encounter confirmation bias due to noise inherent in self-generated pseudo-labels and the presence of boundary samples from different classes. To overcome these challenges, this study introduces a novel framework known as boundary sample-based class-weighted semi-supervised learning (BSCSSL) for medical image classification. Our method aims to alleviate the impact of intra- and inter-class boundary samples derived from unlabeled data. Specifically, we address reliable confidential data and inter-class boundary samples separately through the utilization of an inter-class boundary sample mining module. Additionally, we implement an intra-class boundary sample weighting mechanism to extract class-aware features specific to intra-class boundary samples. Rather than discarding such intra-class boundary samples outright, our approach acknowledges their intrinsic value despite the difficulty associated with accurate classification, as they contribute significantly to model prediction. Experimental results on widely recognized medical image datasets demonstrate the superiority of our proposed BSCSSL method over existing semi-supervised learning approaches. By enhancing the accuracy and robustness of medical image classification, our BSCSSL approach yields considerable implications for advancing medical diagnosis and future research endeavors.

14.
Plant Physiol Biochem ; 206: 108107, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029613

RESUMEN

Selenium (Se) can reduce uptake and translocation of cadmium (Cd) in plants via plenty of ways, including regulation of root morphology. However, the underlying mechanisms on how Se will regulate root morphology under metal(loid) stresses are not fully illustrated. To fill up this knowledge gap, we investigated the effects of 0.5 mg L-1 selenite (Se(IV)) on root exudates, root morphology, root endogenous hormones, and Cd uptake efficiency of rice under the 1 mg L-1 Cd stress condition. The results showed that Se(IV) significantly reduced shoot and root Cd concentrations, and decreased Cd uptake efficiency via root hairs determined by a non-invasive micro-test (NMT) technology. When compared to the 1 mg L-1 Cd (Cd1) treatment, addition of 0.5 mg L-1 Se(IV) (1) significantly reduced root surface area and tip numbers, and non-significantly reduced root length, but significantly enhanced root diameter and root volume; (2) significantly enhanced concentrations of tartaric acid in the root exudate solution, root auxin (IAA) and root jasmonic acid (JA) via a UHPLC or a HPLC analysis; (3) significantly up-regulated metabolites correlated with synthesis of IAA, JA, gibberellin (GA), and salicylic acid, such as GA53, M-SA, (+/-)7-epi-JA, and derivatives of tryptophan and indole in the metabolome analysis. However, results of transcriptome analysis showed that (1) no upregulated differentially expressed genes (DEGs) were enriched in IAA synthesis; (2) some upregulated DEGs were found to be enriched in JA and GA53 synthesis pathways. In summary, although Se(IV) stimulated the synthesis of IAA, JA, and GA53, it significantly inhibited root growth mainly by 1) affecting signal transduction of IAA and GA; 2) altering IAA polar transport and homeostasis; and 3) regulating DEGs including SAUR32, SAUR36, SAUR76, OsSub33, OsEXPA8, OsEXPA18, and Os6bglu24.


Asunto(s)
Cadmio , Reguladores del Crecimiento de las Plantas , Tartratos , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Cadmio/metabolismo , Ácido Selenioso/farmacología , Ácido Selenioso/metabolismo , Transcriptoma , Raíces de Plantas/metabolismo , Transducción de Señal , Metaboloma
15.
Trends Microbiol ; 32(5): 465-476, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38103995

RESUMEN

Metals and metalloids are used as weapons for predatory feeding by unicellular eukaryotes on prokaryotes. This review emphasizes the role of metal(loid) bioavailability over the course of Earth's history, coupled with eukaryogenesis and the evolution of the mitochondrion to trace the emergence and use of the metal(loid) prey-killing phagosome as a feeding strategy. Members of the genera Acanthamoeba and Dictyostelium use metals such as zinc (Zn) and copper (Cu), and possibly metalloids, to kill their bacterial prey after phagocytosis. We provide a potential timeline on when these capacities first evolved and how they correlate with perceived changes in metal(loid) bioavailability through Earth's history. The origin of phagotrophic eukaryotes must have postdated the Great Oxidation Event (GOE) in agreement with redox-dependent modification of metal(loid) bioavailability for phagotrophic poisoning. However, this predatory mechanism is predicted to have evolved much later - closer to the origin of the multicellular metazoans and the evolutionary development of the immune systems.


Asunto(s)
Dictyostelium , Metales , Fagocitosis , Metales/metabolismo , Dictyostelium/metabolismo , Dictyostelium/fisiología , Evolución Biológica , Acanthamoeba , Animales , Fagosomas/metabolismo , Zinc/metabolismo , Metaloides/metabolismo , Cobre/metabolismo , Disponibilidad Biológica , Mitocondrias/metabolismo
16.
J Environ Manage ; 124: 17-24, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23603772

RESUMEN

This study was conducted to determine the optimal planting mode for pakchoi (Brassica rapa chinensis) in Cd-contaminated soil to reduce the accumulation of Cd in the edible parts while maintaining yields. Four additives (red mud (RM), silicon calcium fertiliser (SC), spodium (SP) and calcium magnesium phosphate (CMP)), two foliar fertilisers (Ca and Zn) and two varieties of pakchoi (Aijiaohuang (AJ) and Baixuegongzhu (BX)) were used in this study. The results show that the addition of SC and RM had an effect, but the other additives did not appear to increase the biomasses of AJ and BX. In some cases, the growth responses of AJ and BX to the same treatment were different. Extra additions of Ca or Zn to additive-treated pakchoi did not help the additives stimulate the growth of AJ and BX, except for SC-treated AJ and BX and SP-treated AJ. The SC and CMP additives significantly reduced the available Cd concentration in both the AJ soil and the BX soil; however, they did not significantly decrease the Cd concentration in the aboveground parts of AJ and BX. The RM treatments (for both levels) and some treatments containing SP reduced the available Cd concentration in the soils and reduced the accumulation of Cd in the two pakchoi varieties. Additions of Ca or Zn fertiliser significantly reduced the Cd concentration in the aboveground parts of AJ and BX. However, when Ca or Zn was sprayed on the additive-treated AJ and BX, they did not help the additives reduce the Cd accumulation in the aboveground parts of AJ and BX, except for the additive CMP. This study shows that RM may be an optimal amendment to reduce the accumulation of Cd in the edible part of pakchoi while simultaneously maintaining yields. The utilisation of Ca or Zn as a foliar fertiliser to additive-treated pakchoi showed positive effects only under some conditions.


Asunto(s)
Biodegradación Ambiental , Brassica rapa/metabolismo , Cadmio/metabolismo , Fertilizantes , Contaminantes del Suelo/metabolismo , Biomasa , Brassica rapa/clasificación , Especificidad de la Especie
17.
J Hazard Mater ; 448: 130812, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36709735

RESUMEN

Selenium (Se) can reduce cadmium (Cd) uptake/translocation via regulating pectins, hemicelluloses and lignins of plant root cell walls, but the detailed molecular mechanisms are not clear. In this study, six hydroponic experiments were set up to explore the relationships of uptake/translocation inhibition of Cd by selenite (Se(IV)) with cell wall component (CWC) synthesis and/or interactions. Cd and Se was supplied (alone or combinedly) at 1.0 mg L-1 and 0.5 mg L-1, respectively, with the treatment without Cd and Se as the control. When compared to the Cd1 treatment, the Se0.5Cd1 treatment 1) significantly increased total sugar concentrations in pectins, hemicelluloses and callose, suggesting an enhanced capacity of binding Cd or blocking Cd translocation; 2) stimulated the deposition of Casparian strips (CS) in root endodermis and exodermis to block Cd translocation; 3) stimulated the release of C-O-C (-OH- or -O-) and CO (carboxyl, carbonyl, or amide) to combine Cd; 4) regulated differential expression genes (DEGs) and metabolites (DMs) correlated with synthesis and/or interactions of CWSs to affect cell wall net structure to affect root cell division, subsequent root morphology and finally elemental uptake; and 5) stimulated de-methylesterification of pectins via reducing expression abundances of many DMs and DEGs in the Yang Cycle to reduce supply of methyls to homogalacturonan, and regulated gene expressions of pectin methylesterase to release carboxyls to combine Cd; and 6) down-regulated gene expressions associated with Cd uptake/translocation.


Asunto(s)
Oryza , Selenio , Contaminantes del Suelo , Cadmio/metabolismo , Oryza/metabolismo , Lignina/metabolismo , Ácido Selenioso/metabolismo , Contaminantes del Suelo/metabolismo , Pectinas/química , Pared Celular/metabolismo , Selenio/metabolismo , Raíces de Plantas/metabolismo
18.
J Hazard Mater ; 459: 132184, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37572609

RESUMEN

Ecological restoration of heavily contaminated soils by multiple metal(loid)s in mining areas is very difficult. In this study, we provided an attractive measure of using silkworm excrement (SE) and its modified materials to restore the soil heavily contaminated by arsenic (As), antimony (Sb), cadmium (Cd), lead (Pb) and chromium (Cr). We investigated the adsorption capacities and the associated remediation mechanisms for antimonite [Sb(III)] and antimonate [Sb(V)] by raw SE, biochar-modified SE (BC700), iron-modified BC700 (MBC) and sulfhydryl-modified BC700 (SH). Then, we selected SE and SH to compare their outcomes to restore the vegetations and the soil bacterial communities in the investigated soil mentioned above. The results showed that SE displayed the best characteristics for metal(loid) physical adsorption. But SH conferred the strongest capacity to adsorb Sb (max 23.92 mg g-1), suggesting the process of chemical adsorption played a key role in adsorbing Sb via functional groups (-SH). SE and SH both significantly (1) promoted the growth of pakchoi (Brassica campestris L., New Zealand No.2), community abundance of soil bacteria (283-936 OTUs), and the quantity of bacterial genera correlated with resistance, plant growth promotion and specified carbon metabolism; (2) but reduced bacterial genera correlated with pathogenicity. In this study, we suggested an attractive recyclable measure to restore the disturbed ecological environment in mining areas, i.e, using mulberry to restore the vegetation→ using leaves of mulberry to rear silkworms→ using SE to immobilize metal(loid)s in soils growing mulberry or other plants.


Asunto(s)
Arsénico , Bombyx , Contaminantes del Suelo , Animales , Suelo , Contaminantes del Suelo/análisis , Metales , Arsénico/análisis
19.
Plant Physiol Biochem ; 201: 107904, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37506651

RESUMEN

Selenium (Se) is a microelement that can counteract (a)biotic stresses in plants. Excess antimony (Sb) will inhibit plant photosynthesis, which can be alleviated by appropriate doses of Se but the associated mechanisms at the molecular levels have not been fully explored. Here, a rice variety (Yongyou 9) was exposed to selenite [Se(IV), 0.2 and 0.8 mg L-1] alone or combined with antimonite [Sb(III), 5 and 10 mg L-1]. When compared to the 10 mg L-1 Sb treatment alone, addition of Se in a dose-dependent manner 1) reduced the heat dissipation efficiency resulting from the inhibited donors, Sb concentrations in shoots and roots, leaf concentrations of fructose, H2O2 and O2•-; 2) enhanced heat dissipation efficiency resulting from the inhibited accepters value, concentrations of Chl a, sucrose and starch, and the enzyme activity of adenosine diphosphate glucose pyrophosphorylase, sucrose phosphate synthase, and sucrose synthase; but 3) did not alter gas exchange parameters, concentrations of Chl b and total Chl, enzyme activity of soluble acid invertase, and values of maximum P700 signal, photochemical efficiency of PSI and electron transport rate of PSI. Se alleviated the damage caused by Sb to the oxygen-evolving complex and promoted the transfer of electrons from QA to QB. When compared to the 10 mg L-1 Sb treatment alone, addition of Se 1) up-regulated genes correlated to synthesis pathways of Chl, carotenoid, sucrose and glucose; 2) disturbed signal transduction pathway of abscisic acid; and 3) upregulated gene expression correlated to photosynthetic complexes (OsFd1, OsFER1 and OsFER2).


Asunto(s)
Oryza , Selenio , Transporte de Electrón , Antimonio/farmacología , Oryza/genética , Oryza/metabolismo , Ácido Selenioso/farmacología , Ácido Selenioso/metabolismo , Transcriptoma , Peróxido de Hidrógeno/metabolismo , Electrones , Fotosíntesis , Selenio/farmacología , Hojas de la Planta/metabolismo , Ciclo del Carbono , Sacarosa/metabolismo , Clorofila/metabolismo
20.
J Hazard Mater ; 443(Pt A): 130184, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36270189

RESUMEN

Bacterial adaptation to extreme environments is often mediated by horizontal gene transfer (HGT) via genetic mobile elements. Nevertheless, phage-mediated HGT conferring bacterial arsenic resistance determinants has rarely been investigated. In this study, a highly arsenite and antimonite resistant bacterium, Citrobacter portucalensis strain Sb-2, was isolated, and genome analysis showed that several putative arsenite and antimonite resistance determinants were flanked or embedded in prophages. Furthermore, an active bacteriophage carrying one of the ars clusters (arsRDABC arsR-yraQ/arsP) was obtained and sequenced. These genes encoding putative arsenic resistance determinants were induced by arsenic and antimony as demonstrated by RT-qPCR, and one gene arsP/yraQ of the ars cluster was shown to give resistance to MAs(III) and Rox(III), thereby showing function. Here, we were able to directly show that these phage-mediated arsenic and antimony resistances play a significant role in adapting to As- and Sb-contaminated environments. In addition, we demonstrate that this phage is responsible for conferring arsenic and antimony resistances to C. portucalensis strain Sb-2.


Asunto(s)
Arsénico , Arsenitos , Bacteriófagos , Metaloides , Antimonio/toxicidad , Bacteriófagos/genética , Citrobacter/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA