Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chim Acta ; 1288: 342160, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220292

RESUMEN

BACKGROUND: The development of efficent chromatographic stationary phases (SP) with mixed-mode or multiple interactions in high-performance liquid chromatography (HPLC) for the separation of complex samples is a challenging task. Metal organic frameworks (MOFs)-based SP can provide desired multiple interactions and enable the separation of a diverse range of solutes, but have limitations of low column efficiency and poor stability. RESULTS: Herein, the hybrid MOFs@Covalent organic frameworks (COFs) materials were used as SP in HPLC due to their synergistic structural features. The SiO2@NH2-UiO-66@CTF SP was synthesized by integration of NH2-UiO-66 and covalent triazine framework (CTF) onto silica surface. Due to the unique structure of SiO2@NH2-UiO-66@CTF with hierarchical-pores, this column showed higher column efficiency (up to 49,369 plates m-1 for alkylbenzenes) than the reported columns packed with MOFs-based SP. Owing to the Zr4+-N coordination bonding between CTF and NH2-UiO-66, the structural stability of SiO2@NH2-UiO-66@CTF can be improved. Furthermore, this new column exhibited remarkable column stability with relative standard deviation of retention time of <0.40% after 400 injections. With the combined advantages of multifunctional properties, high column efficiency, and good stability, SiO2@NH2-UiO-66@CTF SP showed excellent selectivity for the separation of a variety of hydrophobic, aromatic, heteroatomic, and hydrophilic analytes. SIGNIFICANCE AND NOVELTY: This work not only offers a promising SP with multiple retention mechanisms for HPLC, but also provides an efficient strategy for development of high column efficiency MOFs-based SP with good stability. Moreover, the MOFs@COFs hybrid materials were expanded in application area through this study, and the research results can also afford the foundation for further explore its structural characteristics.

2.
Anal Chim Acta ; 1303: 342544, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38609271

RESUMEN

BACKGROUND: Aflatoxin B1 (AFB1) and its precursors contaminate food and agricultural products, posing a significant risk to food safety and human health, but simultaneous and effective extraction and determination of AFB1 and its precursors with varied structures is still a challenging task. RESULTS: In this study, a bisimidazolium-type ionic liquid functionalized mesoporous multipod silica (SiO2@mPMO-IL(im)2) was fabricated to extract AFB1 and its two precursors, i.e., averantin and sterigmatocystin. The SiO2@mPMO-IL(im)2 could simultaneously extract three targets with varied structures based on the multipods, mesopores, and multifunctional groups. The density functional theory calculations further verified the multiple interactions between SiO2@mPMO-IL(im)2 and targets. The fabricated SiO2@mPMO-IL(im)2 could effectively extract and determine three targets in grains by combing with dispersive solid-phase extraction and high-performance liquid chromatography. Good linearity (r2 > 0.9978), low LODs (0.9-1.5 µg kg-1) and LOQs (3.0-4.5 µg kg-1), satisfactory spiked recoveries (92.5%-106.8%) and high precisions (RSD<6.4%) were observed. SIGNIFICANCE AND NOVELTY: This work demonstrates the feasibility of SiO2@mPMO-IL(im)2 for simultaneous and effective extraction of toxins with varied structures and provides a promising sample preparation for the analysis of AFB1 and its precursors in grain samples.


Asunto(s)
Aflatoxina B1 , Líquidos Iónicos , Humanos , Dióxido de Silicio , Grano Comestible , Agricultura
3.
J Agric Food Chem ; 72(2): 1330-1338, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38173280

RESUMEN

Averantin (AVN) is an important aflatoxin biosynthetic precursor and has been listed in the screening range of mycotoxins. Herein, a novel ionic liquid-based one-, two-, and three-phase transition microextraction (IL-OTTPTME) method was combined with high-performance liquid chromatography for the extraction and determination of AVN in fatty grain samples. The formation of a homogeneous solution and three-phase system during the IL-OTTPTME process allowed both efficient extraction and coextracted lipid cleanup. Density functional theory calculations and distribution coefficient determination results demonstrated that AVN extraction by IL mainly occurred through hydrogen-bond and π-π interactions. Under optimized conditions, the LOD and LOQ of the proposed method were 0.5 and 1.5 ng/g, respectively. Finally, the method was used to determine AVN in several grains with different fat contents, achieving satisfactory relative recoveries (86.0-107.8%) and RSDs (1.2-6.2%, n = 3).


Asunto(s)
Aflatoxinas , Antraquinonas , Líquidos Iónicos , Microextracción en Fase Líquida , Micotoxinas , Microextracción en Fase Líquida/métodos , Líquidos Iónicos/química , Micotoxinas/análisis , Cromatografía Líquida de Alta Presión/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA