Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Plant J ; 114(6): 1405-1424, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36948889

RESUMEN

Protein lysine acetylation is an important post-translational modification mechanism involved in cellular regulation in eukaryotes. Calmodulin (CaM) is a ubiquitous Ca2+ sensor in eukaryotes and is crucial for plant immunity, but it is so far unclear whether acetylation is involved in CaM-mediated plant immunity. Here, we found that GhCaM7 is acetylated upon Verticillium dahliae (V. dahliae) infection and a positive regulator of V. dahliae resistance. Overexpressing GhCaM7 in cotton and Arabidopsis enhances V. dahliae resistance and knocking-down GhCaM7 makes cotton more susceptible to V. dahliae. Transgenic Arabidopsis plants overexpressing GhCaM7 with mutation at the acetylation site are more susceptible to V. dahliae than transgenics overexpressing the wild-type GhCaM7, implying the importance of the acetylated GhCaM7 in response to V. dahliae infection. Yeast two-hybrid, bimolecular fluorescent complementation, luciferase complementation imaging, and coimmunoprecipitation assays demonstrated interaction between GhCaM7 and an osmotin protein GhOSM34 that was shown to have a positive role in V. dahliae resistance. GhCaM7 and GhOSM34 are co-localized in the cell membrane. Upon V. dahliae infection, the Ca2+ content reduces almost instantly in plants with downregulated GhCaM7 or GhOSM34. Down regulating GhOSM34 enhances accumulation of Na+ and increases cell osmotic pressure. Comparative transcriptomic analyses between cotton plants with an increased or reduced expression level of GhCaM7 and wild-type plants indicate the involvement of jasmonic acid signaling pathways and reactive oxygen species in GhCaM7-enabled disease resistance. Together, these results demonstrate the involvement of CaM protein in the interaction between cotton and V. dahliae, and more importantly, the involvement of the acetylated CaM in the interaction.


Asunto(s)
Arabidopsis , Ascomicetos , Verticillium , Gossypium/genética , Gossypium/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Acetilación , Verticillium/fisiología , Resistencia a la Enfermedad/genética , Ascomicetos/genética , Calmodulina/genética , Calmodulina/metabolismo , Procesamiento Proteico-Postraduccional , Plantas Modificadas Genéticamente/metabolismo , Enfermedades de las Plantas , Regulación de la Expresión Génica de las Plantas
2.
Appl Microbiol Biotechnol ; 108(1): 371, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861165

RESUMEN

Understanding the extent of heritability of a plant-associated microbiome (phytobiome) is critically important for exploitation of phytobiomes in agriculture. Two crosses were made between pairs of cotton cultivars (Z2 and J11, L1 and Z49) with differential resistance to Verticillium wilt. F2 plants were grown in a field, together with the four parents to study the heritability of cotton rhizosphere microbiome. Amplicon sequencing was used to profile bacterial and fungal communities in the rhizosphere. F2 offspring plants of both crosses had higher average alpha diversity indices than the two parents; parents differed significantly from F2 offspring in Bray-Curtis beta diversity indices as well. Two types of data were used to study the heritability of rhizosphere microbiome: principal components (PCs) and individual top microbial operational taxonomic units (OTUs). For the L1 × Z49 cross, the variance among the F2 progeny genotypes (namely, genetic variance, VT) was significantly greater than the random variability (VE) for 12 and 34 out of top 100 fungal and bacterial PCs, respectively. For the Z2 × J11 cross, the corresponding values were 10 and 20 PCs. For 29 fungal OTUs and 10 bacterial OTUs out of the most abundant 100 OTUs, genetic variance (VT) was significantly greater than VE for the L1 × Z49 cross; the corresponding values for the Z2 × J11 cross were 24 and one. The estimated heritability was mostly in the range of 40% to 60%. These results suggested the existence of genetic control of polygenic nature for specific components of rhizosphere microbiome in cotton. KEY POINTS: • F2 offspring cotton plants differed significantly from parents in rhizosphere microbial diversity. • Specific rhizosphere components are likely to be genetically controlled by plants. • Common PCs and specific microbial groups are significant genetic components between the two crosses.


Asunto(s)
Bacterias , Hongos , Gossypium , Microbiota , Rizosfera , Microbiología del Suelo , Gossypium/microbiología , Gossypium/genética , Microbiota/genética , Hongos/genética , Hongos/clasificación , Hongos/aislamiento & purificación , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Raíces de Plantas/genética , Variación Genética , Verticillium/genética , Genotipo
3.
Molecules ; 29(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675693

RESUMEN

Further assessment of ultraviolet C light-emitting diode (UVC-LED) irradiation for influencing shiitake mushrooms' (Lentinus edodes) volatile and sensory properties is needed. In this study, a comparison of UVC-LED irradiation treatment on the flavor profiles in various parts of shiitake mushrooms was conducted using gas chromatography-ion mobility spectrometry (GC-IMS) and sensory analysis. Sixty-three volatile compounds were identified in shiitake mushrooms. The fresh shiitake mushrooms were characterized by the highest values of raw mushroom odors. After UVC-LED treatment, the content of C8 alcohols decreased, especially that of 1-octen-3-ol, while the content of aldehydes increased, especially the content of nonanal and decanal. The score of fatty and green odors was enhanced. For fresh samples, the mushroom odors decreased and the mushroom-like odors weakened more sharply when treated in ethanol suspension than when treated with direct irradiation. The fruit odors were enhanced using direct UVC-LED irradiation for fresh mushroom samples and the onion flavor decreased. As for shiitake mushroom powder in ethanol suspension treated with UVC-LED, the sweaty and almond odor scores decreased and the vitamin D2 content in mushroom caps and stems reached 668.79 µg/g (dw) and 399.45 µg/g (dw), respectively. The results obtained from this study demonstrate that UVC-LED treatment produced rich-flavored, quality mushroom products.


Asunto(s)
Odorantes , Hongos Shiitake , Rayos Ultravioleta , Compuestos Orgánicos Volátiles , Hongos Shiitake/química , Compuestos Orgánicos Volátiles/análisis , Odorantes/análisis , Espectrometría de Movilidad Iónica/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos
4.
Curr Genet ; 69(1): 25-40, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36416932

RESUMEN

The ergosterol biosynthesis pathway plays an important role in model pathogenic bacteria Saccharomyces cerevisiae, but little is known about the biosynthesis of ergosterol in the pathogenic fungus Verticillium dahliae. In this study, we identified the VdERG2 gene encoding sterol C-8 isomerase from V. dahliae and investigated its function in virulence by generating gene deletion mutants (ΔVdERG2) and complemented mutants (C-ΔVdERG2). Knockout of VdERG2 reduced ergosterol content. The conidial germination rate and conidial yield of ΔVdERG2 significantly decreased and abnormal conidia were produced. In spite of VdERG2 did not affect the utilization of carbon sources by V. dahliae, but the melanin production of ΔVdERG2 was decreased in cellulose and pectin were used as the sole carbon sources. Furthermore, the ΔVdERG2 mutants produced less microsclerotia and melanin with a significant decrease in the expression of microsclerotia and melanin-related genes VaflM, Vayg1, VDH1, VdLAC, VdSCD and VT4HR. In addition, mutants ΔVdERG2 were very sensitive to congo red (CR), sodium dodecyl sulfate (SDS) and hydrogen peroxide (H2O2) stresses, indicating that VdERG2 was involved in the cell wall and oxidative stress response. The absence of VdERG2 weakened the penetration ability of mycelium on cellophane and affected the growth of mycelium. Although ΔVdERG2 could infect cotton, its pathogenicity was significantly impaired. These phenotypic defects in ΔVdERG2 could be complemented by the reintroduction of a full-length VdERG2 gene. In summary, as a single conservative secretory protein, VdERG2 played a crucial role in ergosterol biosynthesis, nutritional differentiation and virulence in V. dahliae.


Asunto(s)
Ascomicetos , Verticillium , Virulencia/genética , Melaninas , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ascomicetos/metabolismo , Enfermedades de las Plantas/microbiología
5.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36674996

RESUMEN

Verticillium wilt is a kind of plant vascular disease caused by the soilborne fungus Verticillium dahliae, which severely limits cotton production. Our previous studies showed that the endophytic fungus Gibellulopsis nigrescens CEF08111 can effectively control Verticillium wilt and induce a defense response in cotton plants. However, the comprehensive molecular mechanism governing this response is not yet clear. To study the signaling mechanism induced by strain CEF08111, the transcriptome of cotton seedlings pretreated with CEF08111 was sequenced. The results revealed 249, 3559 and 33 differentially expressed genes (DEGs) at 3, 12 and 48 h post inoculation with CEF08111, respectively. At 12 h post inoculation with CEF08111, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the DEGs were enriched mainly in the plant−pathogen interaction, mitogen-activated protein kinase (MAPK) signaling pathway-plant, and plant hormone signal transduction pathways. Gene ontology (GO) analysis revealed that these DEGs were enriched mainly in the following terms: response to external stimulus, systemic acquired resistance, kinase activity, phosphotransferase activity, xyloglucan: xyloglucosyl transferase activity, xyloglucan metabolic process, cell wall polysaccharide metabolic process and hemicellulose metabolic process. Moreover, many genes, such as calcium-dependent protein kinase (CDPK), flagellin-sensing 2 (FLS2), resistance to Pseudomonas syringae pv. maculicola 1(RPM1) and myelocytomatosis protein 2 (MYC2), that regulate crucial points in defense-related pathways were identified and may contribute to V. dahliae resistance in cotton. Seven DEGs of the pathway phenylpropanoid biosynthesis were identified by weighted gene co-expression network analysis (WGCNA), and these genes are related to lignin synthesis. The above genes were compared and analyzed, a total of 710 candidate genes that may be related to the resistance of cotton to Verticillium wilt were identified. These results provide a basis for understanding the molecular mechanism by which the biocontrol fungus CEF08111 increases the resistance of cotton to Verticillium wilt.


Asunto(s)
Gossypium , Verticillium , Gossypium/genética , Gossypium/metabolismo , Perfilación de la Expresión Génica , Mecanismos de Defensa , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética
6.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34502273

RESUMEN

Cucumber (Cucumis sativus L.), an important vegetable plant species, is susceptible to low temperature stress especially during the seedling stage. Vacuolar invertase (VI) plays important roles in plant responses to abiotic stress. However, the molecular and biochemical mechanisms of VI function in cucumber, have not yet been completely understood and VI responses to low temperature stress and it functions in cold tolerance in cucumber seedlings are also in need of exploration. The present study found that hexose accumulation in the roots of cucumber seedlings under low temperature stress is closely related to the observed enhancement of invertase activity. Our genome-wide search for the vacuolar invertase (VI) genes in cucumber identified the candidate VI-encoding gene CsVI1. Expression profiling of CsVI1 showed that it was mainly expressed in the young roots of cucumber seedlings. In addition, transcriptional analysis indicated that CsVI1 expression could respond to low temperature stress. Recombinant CsVI1 proteins purified from Pichia pastoris and Nicotiana benthamiana leaves could hydrolyze sucrose into hexoses. Further, overexpression of CsVI1 in cucumber plants could increase their hexose contents and improve their low temperature tolerance. Lastly, a putative cucumber invertase inhibitor was found could form a complex with CsVI1. In summary, these results confirmed that CsVI1 functions as an acid invertase involved in hexose accumulation and responds to low temperature stress in cucumber seedlings.


Asunto(s)
Cucumis sativus/fisiología , Hexosas/metabolismo , Proteínas de Plantas/metabolismo , beta-Fructofuranosidasa/metabolismo , Frío , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Raíces de Plantas/fisiología , Saccharomycetales/genética , Plantones/fisiología , Estrés Fisiológico , Sacarosa/metabolismo , Vacuolas/metabolismo , beta-Fructofuranosidasa/genética
7.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35008600

RESUMEN

Vacuolar invertase (VI) can irreversibly degrade sucrose into glucose and fructose and involve in plants abiotic-stress-tolerance. Cucumber (Cucumis sativus L.) is susceptible to drought stress, especially during the seedling stage. To date, the involvement of VI in drought tolerance in cucumber seedlings is in urgent need of exploration. In the present study, a cucumber vacuolar invertase gene, CsVI2, was isolated and functionally characterized. The results showed that (1) CsVI2 showed vacuolar invertase activity both in vivo and in vitro; (2) the transcript level of CsVI2, along with VI activity, was significantly induced by drought stress. Moreover, the expression of sucrose synthase 3 (CsSUS3) was increased and that of sucrose phosphate synthase 1 (CsSPS1) was decreased after exposure to drought stress, which was followed by an increase in sucrose synthase activity and a decrease in sucrose phosphate synthase activity; (3) CsVI2-overexpressing transformed cucumber seedlings showed enhanced vacuolar invertase activity and drought tolerance and 4) protein-protein interaction modelling indicated that a cucumber invertase inhibitor, CsINVINH3, can interact with CsVI2. In summary, the results indicate that CsVI2 as an invertase can regulate sucrose metabolism and enhance drought stress in cucumber seedlings.


Asunto(s)
Cucumis sativus/enzimología , Sequías , Estrés Fisiológico , Sacarosa/metabolismo , beta-Fructofuranosidasa/metabolismo , Secuencia de Aminoácidos , Cucumis sativus/metabolismo , Cucumis sativus/fisiología , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformación Proteica , Plantones/metabolismo , Alineación de Secuencia , beta-Fructofuranosidasa/química
8.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34884844

RESUMEN

Verticillium wilt, mainly caused by a soil-inhabiting fungus Verticillium dahliae, can seriously reduce the yield and quality of cotton. The complex mechanism underlying cotton resistance to Verticillium wilt remains largely unknown. In plants, reactive oxygen species (ROS) mediated by Rbohs is one of the earliest responses of plants to biotic and abiotic stresses. In our previous study, we performed a time-course phospho-proteomic analysis of roots of resistant and susceptible cotton varieties in response to V. dahliae, and found early differentially expressed protein burst oxidase homolog protein D (GhRbohD). However, the role of GhRbohD-mediated ROS in cotton defense against V. dahliae needs further investigation. In this study, we analyzed the function of GhRbohD-mediated resistance of cotton against V. dahliae in vitro and in vivo. Bioinformatics analysis showed that GhRbohD possessed the conservative structural attributes of Rbohs family, 12 members of RbohD out of 57 Rbohs in cotton. The expression of GhRbohD was significantly upregulated after V. dahliae inoculation, peaking at 6 hpi, and the phosphorylation level was also increased. A VIGS test demonstrated that ROS production, NO, H2O2 and Ca2+ contents of GhRbohD-silenced cotton plants were significantly reduced, and lignin synthesis and callose accumulation were damaged, important reasons for the impairment of GhRbohD-silenced cotton's defense against V. dahliae. The expression levels of resistance-related genes were downregulated in GhRbohD-silenced cotton by qRT-PCR, mainly involving the lignin metabolism pathway and the jasmonic acid signaling pathway. However, overexpression of GhRbohD enhanced resistance of transgenic Arabidopsis to V. dahliae challenge. Furthermore, Y2H assays were applied to find that GhPBL9 and GhRPL12C may interact with GhRbohD. These results strongly support that GhRbohD activates ROS production to positively regulate the resistance of plants against V. dahliae.


Asunto(s)
Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Gossypium/metabolismo , NADPH Oxidasas/metabolismo , Proteínas de Plantas/metabolismo , Calcio/metabolismo , Silenciador del Gen , Gossypium/microbiología , NADPH Oxidasas/clasificación , NADPH Oxidasas/genética , Fosforilación , Filogenia , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba
9.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670294

RESUMEN

Verticillium wilt is threatening the world's cotton production. The pathogenic fungus Verticillium dahliae can survive in the soil in the form of microsclerotia for a long time, colonize through the root of cotton, and invade into vascular bundles, causing yellowing and wilting of cotton leaves, and in serious cases, leading to plant death. Breeding resistant varieties is the most economical and effective method to control Verticillium wilt. In previous studies, proteomic analysis was carried out on different cotton varieties inoculated with V. dahliae strain Vd080. It was found that GhRPS6 was phosphorylated after inoculation, and the phosphorylation level in resistant cultivars was 1.5 times than that in susceptible cultivars. In this study, knockdown of GhRPS6 expression results in the reduction of SA and JA content, and suppresses a series of defensive response, enhancing cotton plants susceptibility to V. dahliae. Overexpression in Arabidopsis thaliana transgenic plants was found to be more resistant to V. dahliae. Further, serines at 237 and 240 were mutated to phenylalanine, respectively and jointly. The transgenic Arabidopsis plants demonstrated that seri-237 compromised the plant resistance to V. dahliae. Subcellular localization in Nicotiana benthamiana showed that GhRPS6 was localized in the nucleus. Additionally, the pathogen inoculation and phosphorylation site mutation did not change its localization. These results indicate that GhRPS6 is a potential molecular target for improving resistance to Verticillium wilt in cotton. This lays a foundation for breeding disease-resistant varieties.


Asunto(s)
Ascomicetos/crecimiento & desarrollo , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Gossypium , Enfermedades de las Plantas , Proteínas de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Estudio de Asociación del Genoma Completo , Gossypium/genética , Gossypium/metabolismo , Gossypium/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología
10.
Clin Proteomics ; 17: 32, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32944011

RESUMEN

BACKGROUND: Ginkgolide B (GB), the extract of G. biloba leaves, has been shown to be protective against many neurological disorders, including Parkinson's disease (PD). Efforts have been made to synthesized ginkgolides analogs and derivatives with more targeted and smaller molecular weight. In the present study, four GB derivatives (GBHC-1-GBHC-4) were synthesized, and their protective roles in N-methyl-4-phenylpyridinium (MPP +) injured MN9D dopaminergic neuronal cell line were evaluated. Also, cell response mechanisms upon these GB derivatives treatment were analyzed by iTRAQ proteomics. METHODS: MN9D cells were treated with MPP + to induce in vitro cell models of PD. Four GB derivatives (GBHC-1-GBHC-4) were synthesized, and their protective roles on cell viability and apoptosis in in vitro PD model cells were evaluated by CCK8 assay, fluorescence-activated cell sorting and DAPI staining, respectively. The proteomic profiles of MPP+ injured MN9D cells pretreated with or without GB and GB derivatives were detected using the isobaric tags for relative and absolute quantification (iTRAQ) labeling technique. RESULTS: Pretreatment with GBHC-1-GBHC-4 noticeably increased cell viability and attenuated cell apoptosis in MPP+ -injured MN9D cells. Using proteomic analysis, we identified differentially expressed proteins upon GB and GB derivatives treatment. Chloride intracellular channel 4 (CLIC4) and "protein processing in endoplasmic reticulum" pathways participated in the protective roles of GB and GBHC-4. GB and GBHC-4 pretreatment could significantly reverse MPP+ -induced CLIC4 expression and translocation from cytoplasm to nucleus of MN9D cells. CONCLUSIONS: Quantitative comparative proteomic analysis identified differentially expressed proteins associated with GB and GB derivatives. We further verified the expression of CLIC4 by western blotting and immunocytochemistry assay. This bio-information on the identified pathways and differentially expressed proteins such as CLIC4 provide more targeted directions for the synthesis of more effective and targeted GB derivatives for the treatment of neurological disorders.

11.
Mol Med ; 25(1): 57, 2019 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-31864312

RESUMEN

The incidence and mortality of strokes have increased over the past three decades in China. Ischemic strokes can cause a sequence of detrimental events in patients, including increased permeability and dysfunction of the blood-brain barrier, brain edema, metabolic disturbance, endoplasmic reticulum stress, autophagy, oxidative stress, inflammation, neuron death and apoptosis, and cognitive impairment. Thrombolysis using recombinant tissue plasminogen activator (rtPA) and mechanical embolectomy with a retrievable stent are two recognized strategies to achieve reperfusion after a stroke. Nevertheless, rtPA has a narrow therapeutic timeframe, and mechanical embolectomy has limited rates of good neurological outcomes. EGb761 is a standardized and extensively studied extract of Ginkgo biloba leaves. The ginkgolides and bilobalide that constitute a critical part of EGb761 have demonstrated protective properties towards cerebral injury. Ginkgolides include Ginkgolide A (GA), Ginkgolide B (GB), Ginkgolide C (GC), Ginkgolide J (GJ), Ginkgolide K (GK), Ginkgolide L (GL), and Ginkgolide M (GM). This review seeks to elucidate the neuroprotective effects and mechanisms of ginkgolides, especially GA and GB, and bilobalide in cerebral injury following ischemic strokes.


Asunto(s)
Bilobálidos , Isquemia Encefálica , Ginkgólidos , Fármacos Neuroprotectores , Fitoquímicos , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/fisiopatología , Ginkgo biloba , Humanos , Ratones , Extractos Vegetales , Ratas
12.
J Exp Bot ; 68(16): 4559-4569, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28981784

RESUMEN

The pigment components in green cotton fibers were isolated and identified as 22-O-caffeoyl-22-hydroxymonodocosanoin and 22-O-caffeoyl-22-hydroxydocosanoic acid. The concentration of 22-O-caffeoyl-22-hydroxymonodocosanoin correlated positively with the degree of colour in the green fibers, indicating a role for caffeoyl derivatives in the pigmentation of green cotton fibers. Upland cotton (Gossypium hirsutum L.) contains four genes, Gh4CL1-Gh4CL4, encoding 4-coumarate:CoA ligases (4CLs), key enzymes in the phenylpropanoid biosynthesis pathway. In 15-24-day post-anthesis fibers, the expression level of Gh4CL1 was very low, Gh4CL3 had a similar expression level in both white and green cottons, Gh4CL2 had a significantly higher expression level in green fibers than in white fibers, while Gh4CL4 had a higher expression level in white fibers than in green fibers. According to enzyme kinetics analysis, Gh4CL1 displayed a preference for 4-coumarate, Gh4CL3 and Gh4CL4 exhibited a somewhat low but still prominent activity towards ferulate, while Gh4CL2 had a strong preference for caffeate and ferulate. These results suggest that Gh4CL2 might be involved in the metabolism of caffeoyl residues and related to pigment biosynthesis in green cotton fibers. Our findings provide insights for understanding the biochemical and molecular mechanisms of pigmentation in green cotton fibers.


Asunto(s)
Fibra de Algodón , Ácidos Grasos/metabolismo , Gossypium/genética , Pigmentación/fisiología , Proteínas de Plantas/genética , Ácidos Cafeicos/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Ácidos Grasos/genética , Regulación de la Expresión Génica de las Plantas , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Espectroscopía de Resonancia Magnética , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Biologicals ; 44(5): 360-6, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27461241

RESUMEN

Rapid and sensitive diagnostic methods are needed to help physicians make faster and better treatment decision for patients suffered from diarrhea. In the present study, a probe-free and sensitive RT-PCR combined high resolution melting analysis (HRMA) assay was established successfully for the detection of four major diarrhea-causing pathogens. The lower limit of detection of the assay were 10(0), 10(2), 10(0) and 10(3) copies/reaction for rotaviruses group A, astroviruses serotype 1, noroviruses genogroup II, and sapoviruses genegroup I, respectively, which were 1000-fold, 10-fold, 1000-fold and 10-fold more sensitive than conventional RT-PCR assay developed in parallel and comparable to or higher than commercially available real-time RT-PCR assay. Blinded sample evaluation showed that the assay was 100% concordant to both conventional RT-PCR and commercial real-time RT-PCR, indicating high reliability of the new assay. Therefore, the assay could provide a valuable platform for the probe-free and sensitive diagnosis of these pathogens.


Asunto(s)
Diarrea , Infecciones por Virus ARN , Virus ARN/genética , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Diarrea/diagnóstico , Diarrea/genética , Diarrea/virología , Femenino , Humanos , Masculino , Desnaturalización de Ácido Nucleico , Infecciones por Virus ARN/diagnóstico , Infecciones por Virus ARN/genética
14.
Curr Genet ; 61(4): 555-66, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25652159

RESUMEN

The fungal plant pathogen Verticillium dahliae is the causal agent of vascular wilt, a disease that can seriously diminish cotton fiber yield. The pathogenicity mechanism and the identity of the genes that interact with cotton during the infection process still remain unclear. In this study, we investigated the low-pathogenic, non-microsclerotium-producing mutant vdpr3 obtained in a previous study from the screening of a T-DNA insertional library of the highly virulent isolate Vd080; the pathogenicity-related gene (VdPR3) in wild-type strain Vd080 was cloned. Knockout mutants (ΔVdPR3) showed lower mycelium growth and obvious reduction in sporulation ability without microsclerotium formation. An evaluation of carbon utilization in mutants and wild-type isolate Vd080 demonstrated that mutants-lacking VdPR3 exhibited decreased cellulase and amylase activities, which was restored in the complementary mutants (ΔVdPR3-C) to levels similar to those of Vd080. ΔVdPR3 postponed infectious events in cotton and showed a significant reduction in pathogenicity. Reintroduction of a functional VdPR3 copy into ΔVdPR3-C restored the ability to infect cotton plants. These results suggest that VdPR3 is a multifunctional gene involved in growth development, extracellular enzyme activity, and virulence of V. dahliae on cotton.


Asunto(s)
Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Gossypium/microbiología , Esporas Fúngicas/patogenicidad , Verticillium/patogenicidad , Factores de Virulencia/genética , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Amilasas/genética , Amilasas/metabolismo , Celulasa/genética , Celulasa/metabolismo , Clonación Molecular , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas Fúngicas/metabolismo , Biblioteca de Genes , Gossypium/genética , Gossypium/metabolismo , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Verticillium/genética , Verticillium/metabolismo , Virulencia , Factores de Virulencia/metabolismo
15.
Yi Chuan ; 37(8): 821-7, 2015 08.
Artículo en Zh | MEDLINE | ID: mdl-26266785

RESUMEN

The transgenic cotton expressing chitinase and glucanase genes was studied using nontransgenic cotton as a control. Specifically, the effects of exogenous genes on bacterial community diversity in rhizospheres of cotton at stages of seedling, budding, boll forming and boll opening were evaluated through comparing the number of cultivable bacteria and analyzing 16S rRNA gene clone libraries. The results showed that the number of cultivable bacteria was not affected by exogenous genes but the cotton growth period, and the number peaked at the stage of boll forming with vigorous metabolism. The 16S rRNA gene clone library prepared from soil bacteria in rhizospheres of transgenic and nontransgenic cotton at different stages contained 2400 clones which covered 283 genera. Among them, Acidobacterium was the most dominant group which contained 642 clones, followed by unclassified bacterium and Flavisolibacter. Compared with nontransgenic cotton, the rhizosphere bacterial diversity of transgenic cotton exhibited lower level at the same growth stage, however, their common bacterial communities increased with growth and development. Our results suggest that chitinase and glucanase genes decrease the rhizosphere bacterial diversity at distinct degrees, however, the difference of bacterial diversity between transgenic and nontransgenic cotton reduces gradually with the extension of cultivation period.


Asunto(s)
Quitinasas/genética , Glicósido Hidrolasas/genética , Gossypium/genética , Plantas Modificadas Genéticamente , Microbiología del Suelo , ARN Ribosómico 16S/genética
16.
Nat Prod Res ; : 1-7, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629157

RESUMEN

Icariin is the most bioactive ingredient of Epimedium L. and a quality marker of Herba Epimedii. Conventional methods for production of Icariin are known to be inefficient, resulting in low yields and significant environmental pollution. This study aimed to develop a sustainable and effective biphasic enzymatic hydrolysis system for the efficient conversion of epimedin C to icariin. The biphasic system was created using butyl acetate and phosphate buffer (pH 4.5) at a ratio of 3:1 (V/V) along with α-L-rhamnosidase/epimedin C (2 U/1 mg) at 50 °C for 12 h. Consequently, 98.21% of epimedin C was hydrolysed to icariin, with 95.62% of the product being transferred to the organic phase. Even after four cycles of use, the conversion ratio remained high at 75.28%. Furthermore, this novel strategy was also used for the conversion of Epimedium brevicornu Maxim. extracts. The biphasic system represents a sustainable and effective method for icariin production, offering potential benefits for industrial applications.

17.
Front Microbiol ; 15: 1429755, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113834

RESUMEN

Introduction: Verticillium dahliae, a soil-borne fungal pathogen, can cause cotton Verticillium wilt. In this study, VdP5CDH, the member of the ALDH_F4-17 family of carboxylate dehydrogenases, was identified in the genome of V. dahliae and investigated function in regulating virulence by generating gene deletion mutants and complementary mutants. Methods: Homologous recombination method was used to construct mutants, transcriptome sequencing revealed gene-related metabolic pathways, and disease degree of cotton was observed through pathogen infection experiments. Results: The conidial surface of VdP5CDH deletion strains was dented and shriveled, and the number of conidial spores increased. Compared with the wild-type (WT), the mycelial diameter of deletion mutants increased by 10.59%-11.16%, the mycelial growth showed irregular branching patterns, and misaligned arrangement. Although capable of penetrating cellophane, deletion mutants were unable to produce melanin. VdP5CDH was mainly associated with glucose metabolism, nitrogen metabolism, ABC transporter activity as well as various amino acid metabolic processes. After gene knockout, raffinose and pectin were used as the main carbon sources to promote the growth of strains and the growth rate of deletion strains in the medium containing raffinose was higher than that of WT. Consequently, the deletion mutant strains decreased utilization efficiency with which they utilized various nitrogen sources. The deletion mutants maintain responsiveness to osmotic stress and oxidative stress stimuli. Additionally, compared to WT strains, the deletion mutant strains exhibited differences in culture temperature tolerance, UV exposure response, and fungicide sensitivity. After cotton was infected with deletion strains conidial suspension, its disease index increased dramatically, while it gradually decreased after spraying with 2 mM glutamate in batches. With the increase of spraying times, the effect was more significant, and the disease index decreased by 18.95%-19.66% at 26 dpi. Discussion: These results indicated that VdP5CDH regulates the pathogenicity of fungi and controls mycelia growth, melanin formation, conidia morphology, abiotic stress resistance, and the expression of infecting structure-related genes.

18.
Front Microbiol ; 15: 1377713, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638896

RESUMEN

Sti1/Hop, a stress-induced co-chaperone protein, serves as a crucial link between Hsp70 and Hsp90 during cellular stress responses. Despite its importance in stress defense mechanisms, the biological role of Sti1 in Verticillium dahliae, a destructive fungal pathogen, remains largely unexplored. This study focused on identifying and characterizing Sti1 homologues in V. dahliae by comparing them to those found in Saccharomyces cerevisiae. The results indicated that the VdSti1-deficient mutant displayed increased sensitivity to drugs targeting the ergosterol synthesis pathway, leading to a notable inhibition of ergosterol biosynthesis. Moreover, the mutant exhibited reduced production of microsclerotia and melanin, accompanied by decreased expression of microsclerotia and melanin-related genes VDH1, Vayg1, and VaflM. Additionally, the mutant's conidia showed more severe damage under heat shock conditions and displayed growth defects under various stressors such as temperature, SDS, and CR stress, as well as increased sensitivity to H2O2, while osmotic stress did not impact its growth. Importantly, the VdSti1-deficient mutant demonstrated significantly diminished pathogenicity compared to the wild-type strain. This study sheds light on the functional conservation and divergence of Sti1 homologues in fungal biology and underscores the critical role of VdSti1 in microsclerotia development, stress response, and pathogenicity of V. dahliae.

19.
Arch Virol ; 158(12): 2621-3, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23818047

RESUMEN

A novel double-stranded RNA (dsRNA) mycovirus, designated Verticillium dahliae partitivirus 1 (VdPV1), was isolated from a strain of the fungus Verticillium dahliae. The VdPV1 genome has two dsRNA genome segments. The larger segment (1768 bp) has a single open reading frame (ORF) with a conserved RNA-dependent RNA polymerase (RdRP) domain. The smaller segment (1587 bp) contains a single ORF encoding a putative coat protein. Analysis of its genomic structure indicated that VdPV1 is a new member of the genus Partitivirus. We report the full-length sequence of this partitivirus that infects Verticillium dahliae, the causal agent of verticillium wilt of cotton.


Asunto(s)
Genoma Viral , Virus ARN/genética , ARN Viral/genética , Análisis de Secuencia de ADN , Verticillium/virología , Proteínas de la Cápside/genética , Análisis por Conglomerados , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Virus ARN/aislamiento & purificación , ARN Bicatenario/genética , ARN Polimerasa Dependiente del ARN/genética , Homología de Secuencia de Aminoácido
20.
Microbiol Spectr ; 11(1): e0351522, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36475739

RESUMEN

Verticillium dahliae Kleb is a typical soilborne pathogen that can cause vascular wilt disease on more than 400 plants. Functional analysis of genes related to the growth and virulence is crucial to revealing the molecular mechanism of the pathogenicity of V. dahliae. Glycosidase hydrolases can hydrolyze the glycosidic bond, and some can cause host plant immune response to V. dahliae. Here, we reported a functional validation of VdGAL4 as an α-galactosidase that belongs to glycoside hydrolase family 27. VdGAL4 could cause plant cell death, and its signal peptide plays an important role in cellular immune response. VdGAL4-triggered cell death depends on BAK1 and SOBIR1 in Nicotiana benthamiana. In V. dahliae, the function of VdGAL4 in mycelial growth, conidia, microsclerotium, and pathogenicity was studied by constructing VdGAL4 deletion and complementation mutants. Results showed that the deletion of VdGAL4 reduced the conidial yield and conidial germination rate of V. dahliae and changed the microscopic morphology of conidia; the mycelia were arranged more disorderly and were unable to produce microsclerotium. The VdGAL4 deletion mutants exhibited reduced utilization of different carbon sources, such as raffinose and sucrose. The VdGAL4 deletion mutants were also more sensitive to abiotic stress agents of SDS, sorbitol, low-temperature stress of 16°C, and high-temperature stress of 45°C. In addition, the VdGAL4 deletion mutants lost the ability to penetrate cellophane and its mycelium were disorderly arranged. Remarkably, VdGAL4 deletion mutants exhibited reduced pathogenicity of V. dahliae. These results showed that VdGAL4 played a critical role in the pathogenicity of V. dahliae by regulating mycelial growth, conidial morphology, and the formation of microsclerotium. IMPORTANCE This study showed that α-galactosidase VdGAL4 of V. dahliae could activate plant immune response and plays an important role in conidial morphology and yield, formation of microsclerotia, and mycelial penetration. VdGAL4 deletion mutants significantly reduced the pathogenicity of V. dahliae. These findings deepened the understanding of pathogenic virulence factors and how the mechanism of pathogenic fungi infected the host, which may help to seek new strategies for effective control of plant diseases caused by pathogenic fungi.


Asunto(s)
Ascomicetos , Verticillium , Virulencia/genética , alfa-Galactosidasa/metabolismo , Verticillium/genética , Factores de Virulencia/genética , Ascomicetos/metabolismo , Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA