Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 11(7): e1001599, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23843744

RESUMEN

Enzymes stabilize transition states of reactions while limiting binding to ground states, as is generally required for any catalyst. Alkaline Phosphatase (AP) and other nonspecific phosphatases are some of Nature's most impressive catalysts, achieving preferential transition state over ground state stabilization of more than 10²²-fold while utilizing interactions with only the five atoms attached to the transferred phosphorus. We tested a model that AP achieves a portion of this preference by destabilizing ground state binding via charge repulsion between the anionic active site nucleophile, Ser102, and the negatively charged phosphate monoester substrate. Removal of the Ser102 alkoxide by mutation to glycine or alanine increases the observed Pi affinity by orders of magnitude at pH 8.0. To allow precise and quantitative comparisons, the ionic form of bound P(i) was determined from pH dependencies of the binding of Pi and tungstate, a P(i) analog lacking titratable protons over the pH range of 5-11, and from the ³¹P chemical shift of bound P(i). The results show that the Pi trianion binds with an exceptionally strong femtomolar affinity in the absence of Ser102, show that its binding is destabilized by ≥108-fold by the Ser102 alkoxide, and provide direct evidence for ground state destabilization. Comparisons of X-ray crystal structures of AP with and without Ser102 reveal the same active site and P(i) binding geometry upon removal of Ser102, suggesting that the destabilization does not result from a major structural rearrangement upon mutation of Ser102. Analogous Pi binding measurements with a protein tyrosine phosphatase suggest the generality of this ground state destabilization mechanism. Our results have uncovered an important contribution of anionic nucleophiles to phosphoryl transfer catalysis via ground state electrostatic destabilization and an enormous capacity of the AP active site for specific and strong recognition of the phosphoryl group in the transition state.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Serina/química , Fosfatasa Alcalina/química , Fosfatasa Alcalina/genética , Dominio Catalítico , Concentración de Iones de Hidrógeno , Mutación , Fosfatos/química , Fosfatos/metabolismo , Serina/genética
2.
Structure ; 13(7): 1035-45, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16004875

RESUMEN

The FFAT motif is a targeting signal responsible for localizing a number of proteins to the cytosolic surface of the endoplasmic reticulum (ER) and to the nuclear membrane. FFAT motifs bind to members of the highly conserved VAP protein family, which are tethered to the cytoplasmic face of the ER by a C-terminal transmembrane domain. We have solved crystal structures of the rat VAP-A MSP homology domain alone and in complex with an FFAT motif. The co-crystal structure was used to design a VAP mutant that disrupts rat and yeast VAP-FFAT interactions in vitro. The FFAT binding-defective mutant also blocked function of the VAP homolog Scs2p in yeast. Finally, overexpression of the FFAT binding-defective VAP in COS7 cells dramatically altered ER morphology. Our data establish the structural basis of FFAT-mediated ER targeting and suggest that FFAT-targeted proteins play an important role in determining ER morphology.


Asunto(s)
Proteínas Portadoras/química , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/química , Secuencias de Aminoácidos , Animales , Sitios de Unión , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Cristalografía por Rayos X , ADN/química , Dimerización , Proteínas Fúngicas/química , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente , Modelos Químicos , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Ratas , Electricidad Estática , Proteínas de Transporte Vesicular/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA