Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genet Med ; 26(5): 101076, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38258669

RESUMEN

PURPOSE: Genome sequencing (GS)-specific diagnostic rates in prospective tightly ascertained exome sequencing (ES)-negative intellectual disability (ID) cohorts have not been reported extensively. METHODS: ES, GS, epigenetic signatures, and long-read sequencing diagnoses were assessed in 74 trios with at least moderate ID. RESULTS: The ES diagnostic yield was 42 of 74 (57%). GS diagnoses were made in 9 of 32 (28%) ES-unresolved families. Repeated ES with a contemporary pipeline on the GS-diagnosed families identified 8 of 9 single-nucleotide variations/copy-number variations undetected in older ES, confirming a GS-unique diagnostic rate of 1 in 32 (3%). Episignatures contributed diagnostic information in 9% with GS corroboration in 1 of 32 (3%) and diagnostic clues in 2 of 32 (6%). A genetic etiology for ID was detected in 51 of 74 (69%) families. Twelve candidate disease genes were identified. Contemporary ES followed by GS cost US$4976 (95% CI: $3704; $6969) per diagnosis and first-line GS at a cost of $7062 (95% CI: $6210; $8475) per diagnosis. CONCLUSION: Performing GS only in ID trios would be cost equivalent to ES if GS were available at $2435, about a 60% reduction from current prices. This study demonstrates that first-line GS achieves higher diagnostic rate than contemporary ES but at a higher cost.


Asunto(s)
Secuenciación del Exoma , Exoma , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Masculino , Femenino , Exoma/genética , Secuenciación del Exoma/economía , Estudios de Cohortes , Pruebas Genéticas/economía , Pruebas Genéticas/métodos , Secuenciación Completa del Genoma/economía , Niño , Genoma Humano/genética , Variaciones en el Número de Copia de ADN/genética , Polimorfismo de Nucleótido Simple/genética , Preescolar
2.
Am J Med Genet A ; : e63856, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287049

RESUMEN

Weiss-Kruszka syndrome (WKS) is a rare genetic disorder characterized by metopic ridging, ptosis, arched eyebrows, down slanting palpebral fissures, abnormalities in the corpus callosum, cardiac malformations, and variable neurodevelopmental delay. To date, 32 individuals with a diagnosis of WKS have been reported in the literature. The syndrome is caused by a heterozygous pathogenic variant in the ZNF462 gene or a deletion of the 9p31.2 region involving ZNF462. There is significant phenotypic heterogeneity and intrafamilial variability among these patients. Our study reviewed nine patients from seven unrelated families and identified seven novel heterozygous ZNF462 variants through exome sequencing. GestaltMatcher analysis of our cohort's facial images, alongside previously published images of ZNF462 patients, demonstrated a high degree of facial similarity. Further longitudinal research is needed to delineate this rare condition's long-term health implications and adult-onset features.

3.
Genet Med ; 24(1): 130-145, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906502

RESUMEN

PURPOSE: Genetic variants causing aberrant premessenger RNA splicing are increasingly being recognized as causal variants in genetic disorders. In this study, we devise standardized practices for polymerase chain reaction (PCR)-based RNA diagnostics using clinically accessible specimens (blood, fibroblasts, urothelia, biopsy). METHODS: A total of 74 families with diverse monogenic conditions (31% prenatal-congenital onset, 47% early childhood, and 22% teenage-adult onset) were triaged into PCR-based RNA testing, with comparative RNA sequencing for 19 cases. RESULTS: Informative RNA assay data were obtained for 96% of cases, enabling variant reclassification for 75% variants that can be used for genetic counseling (71%), to inform clinical care (32%) and prenatal counseling (41%). Variant-associated mis-splicing was highly reproducible for 28 cases with samples from ≥2 affected individuals or heterozygotes and 10 cases with ≥2 biospecimens. PCR amplicons encompassing another segregated heterozygous variant was vital for clinical interpretation of 22 of 79 variants to phase RNA splicing events and discern complete from partial mis-splicing. CONCLUSION: RNA diagnostics enabled provision of a genetic diagnosis for 64% of recruited cases. PCR-based RNA diagnostics has capacity to analyze 81.3% of clinically significant genes, with long amplicons providing an advantage over RNA sequencing to phase RNA splicing events. The Australasian Consortium for RNA Diagnostics (SpliceACORD) provide clinically-endorsed, standardized protocols and recommendations for interpreting RNA assay data.


Asunto(s)
Empalme del ARN , ARN , Adolescente , Adulto , Preescolar , Humanos , Mutación , ARN/genética , Empalme del ARN/genética , Análisis de Secuencia de ARN , Secuenciación del Exoma
4.
Am J Med Genet A ; 188(12): 3432-3447, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36367278

RESUMEN

Verheij syndrome (VRJS) is a rare craniofacial spliceosomopathy presenting with craniofacial dysmorphism, multiple congenital anomalies and variable neurodevelopmental delay. It is caused by single nucleotide variants (SNVs) in PUF60 or interstitial deletions of the 8q24.3 region. PUF60 encodes a splicing factor which forms part of the spliceosome. To date, 36 patients with a sole diagnosis of VRJS due to disease-causing PUF60 SNVs have been reported in peer-reviewed publications. Although the depth of their phenotyping has varied greatly, they exhibit marked phenotypic heterogeneity. We report 10 additional unrelated patients, including the first described patients of Khmer, Indian, and Vietnamese ethnicities, and the eldest patient to date, with 10 heterozygous PUF60 variants identified through exome sequencing, 8 previously unreported. All patients underwent deep phenotyping identifying variable dysmorphism, growth delay, neurodevelopmental delay, and multiple congenital anomalies, including several unique features. The eldest patient is the only reported individual with a germline variant and neither neurodevelopmental delay nor intellectual disability. In combining these detailed phenotypic data with that of previously reported patients (n = 46), we further refine the known frequencies of features associated with VRJS. These include neurodevelopmental delay/intellectual disability (98%), axial skeletal anomalies (74%), appendicular skeletal anomalies (73%), oral anomalies (68%), short stature (66%), cardiac anomalies (63%), brain malformations (48%), hearing loss (46%), microcephaly (41%), colobomata (38%), and other ocular anomalies (65%). This case series, incorporating three patients from previously unreported ethnic backgrounds, further delineates the broad pleiotropy and mutational spectrum of PUF60 pathogenic variants.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Microcefalia , Factores de Empalme de ARN , Proteínas Represoras , Humanos , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Fenotipo , Proteínas Represoras/genética , Factores de Empalme de ARN/genética , Empalmosomas/genética , Empalmosomas/patología
5.
Hum Mutat ; 41(11): 1884-1891, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32906196

RESUMEN

Rapid genomic diagnosis programs are transforming rare disease diagnosis in acute pediatrics. A ventilated newborn with cerebellar hypoplasia underwent rapid exome sequencing (75 h), identifying a novel homozygous ASNS splice-site variant (NM_133436.3:c.1476+1G>A) of uncertain significance. Rapid ASNS splicing studies using blood-derived messenger RNA from the family trio confirmed a consistent pattern of abnormal splicing induced by the variant (cryptic 5' splice-site or exon 12 skipping) with absence of normal ASNS splicing in the proband. Splicing studies reported within 10 days led to reclassification of c.1476+1G>A as pathogenic at age 27 days. Intensive care was redirected toward palliation. Cost analyses for the neonate and his undiagnosed, similarly affected deceased sibling, demonstrate that early diagnosis reduced hospitalization costs by AU$100,828. We highlight the diagnostic benefits of adjunct RNA testing to confirm the pathogenicity of splicing variants identified via rapid genomic testing pipelines for precision and preventative medicine.


Asunto(s)
Aspartatoamoníaco Ligasa/deficiencia , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/genética , Empalme del ARN , Secuencia de Aminoácidos , Enfermedad Crítica , Exones , Femenino , Humanos , Recién Nacido , Masculino , Linaje , Sitios de Empalme de ARN , Secuenciación del Exoma
6.
Genet Med ; 22(1): 210-218, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31292527

RESUMEN

PURPOSE: Clinical genetics is an evolving specialty impacted by the availability of increasingly sophisticated investigational technologies. Methods for monitoring the changes in workload and workflow are necessary to ensure adequate service resourcing. METHODS: A literature search of known workload and workflow studies was completed, identifying metrics of value. A framework of metrics to allow consistent capture in clinical genetics practice was developed. This framework was then applied to local general genetics service data to evaluate recent changes in service delivery. RESULTS: Literature regarding service delivery metrics in clinical genetics services is limited and inconsistent in application. The metric framework generated is a useful tool for consistent and ongoing evaluation of general genetics services. Through application of the framework, new service delivery trends and significant changes in workload were identified. CONCLUSION: Studies of clinical genetics service delivery suffer from the use of inconsistent metrics. This framework will allow for monitoring of changes to service delivery, caseload volume, caseload complexity, and workforce over time. Local data presented demonstrate the significant effect that implementing clinical genomic sequencing has had on clinical service delivery. Applying this framework produces a comprehensive service characterization, enabling funding bodies to justify resourcing that addresses the growing demand of clinical genetics.


Asunto(s)
Atención a la Salud/tendencias , Servicios Genéticos/tendencias , Genómica/métodos , Australia , Humanos , Flujo de Trabajo , Carga de Trabajo
7.
JAMA ; 323(24): 2503-2511, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32573669

RESUMEN

Importance: Widespread adoption of rapid genomic testing in pediatric critical care requires robust clinical and laboratory pathways that provide equitable and consistent service across health care systems. Objective: To prospectively evaluate the performance of a multicenter network for ultra-rapid genomic diagnosis in a public health care system. Design, Setting, and Participants: Descriptive feasibility study of critically ill pediatric patients with suspected monogenic conditions treated at 12 Australian hospitals between March 2018 and February 2019, with data collected to May 2019. A formal implementation strategy emphasizing communication and feedback, standardized processes, coordination, distributed leadership, and collective learning was used to facilitate adoption. Exposures: Ultra-rapid exome sequencing. Main Outcomes and Measures: The primary outcome was time from sample receipt to ultra-rapid exome sequencing report. The secondary outcomes were the molecular diagnostic yield, the change in clinical management after the ultra-rapid exome sequencing report, the time from hospital admission to the laboratory report, and the proportion of laboratory reports returned prior to death or hospital discharge. Results: The study population included 108 patients with a median age of 28 days (range, 0 days to 17 years); 34% were female; and 57% were from neonatal intensive care units, 33% were from pediatric intensive care units, and 9% were from other hospital wards. The mean time from sample receipt to ultra-rapid exome sequencing report was 3.3 days (95% CI, 3.2-3.5 days) and the median time was 3 days (range, 2-7 days). The mean time from hospital admission to ultra-rapid exome sequencing report was 17.5 days (95% CI, 14.6-21.1 days) and 93 reports (86%) were issued prior to death or hospital discharge. A molecular diagnosis was established in 55 patients (51%). Eleven diagnoses (20%) resulted from using the following approaches to augment standard exome sequencing analysis: mitochondrial genome sequencing analysis, exome sequencing-based copy number analysis, use of international databases to identify novel gene-disease associations, and additional phenotyping and RNA analysis. In 42 of 55 patients (76%) with a molecular diagnosis and 6 of 53 patients (11%) without a molecular diagnosis, the ultra-rapid exome sequencing result was considered as having influenced clinical management. Targeted treatments were initiated in 12 patients (11%), treatment was redirected toward palliative care in 14 patients (13%), and surveillance for specific complications was initiated in 19 patients (18%). Conclusions and Relevance: This study suggests feasibility of ultra-rapid genomic testing in critically ill pediatric patients with suspected monogenic conditions in the Australian public health care system. However, further research is needed to understand the clinical value of such testing, and the generalizability of the findings to other health care settings.


Asunto(s)
Enfermedad Crítica , Secuenciación del Exoma/métodos , Enfermedades Genéticas Congénitas/genética , Pruebas Genéticas/métodos , Australia , Niño , Preescolar , Estudios de Factibilidad , Femenino , Enfermedades Genéticas Congénitas/diagnóstico , Humanos , Lactante , Recién Nacido , Masculino , Programas Nacionales de Salud , Estudios Prospectivos , Factores de Tiempo
9.
Orphanet J Rare Dis ; 19(1): 288, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095811

RESUMEN

BACKGROUND: Significant recent efforts have facilitated increased access to clinical genetics assessment and genomic sequencing for children with rare diseases in many centres, but there remains a service gap for adults. The Austin Health Adult Undiagnosed Disease Program (AHA-UDP) was designed to complement existing UDP programs that focus on paediatric rare diseases and address an area of unmet diagnostic need for adults with undiagnosed rare conditions in Victoria, Australia. It was conducted at a large Victorian hospital to demonstrate the benefits of bringing genomic techniques currently used predominantly in a research setting into hospital clinical practice, and identify the benefits of enrolling adults with undiagnosed rare diseases into a UDP program. The main objectives were to identify the causal mutation for a variety of diseases of individuals and families enrolled, and to discover novel disease genes. METHODS: Unsolved patients in whom standard genomic diagnostic techniques such as targeted gene panel, exome-wide next generation sequencing, and/or chromosomal microarray, had already been performed were recruited. Genome sequencing and enhanced genomic analysis from the research setting were applied to aid novel gene discovery. RESULTS: In total, 16/50 (32%) families/cases were solved. One or more candidate variants of uncertain significance were detected in 18/50 (36%) families. No candidate variants were identified in 16/50 (32%) families. Two novel disease genes (TOP3B, PRKACB) and two novel genotype-phenotype correlations (NARS, and KMT2C genes) were identified. Three out of eight patients with suspected mosaic tuberous sclerosis complex had their diagnosis confirmed which provided reproductive options for two patients. The utility of confirming diagnoses for patients with mosaic conditions (using high read depth sequencing and ddPCR) was not specifically envisaged at the onset of the project, but the flexibility to offer recruitment and analyses on an as-needed basis proved to be a strength of the AHA-UDP. CONCLUSION: AHA-UDP demonstrates the utility of a UDP approach applying genome sequencing approaches in diagnosing adults with rare diseases who have had uninformative conventional genetic analysis, informing clinical management, recurrence risk, and recommendations for relatives.


Asunto(s)
Enfermedades Raras , Humanos , Adulto , Femenino , Masculino , Australia , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Enfermedades no Diagnosticadas/genética , Enfermedades no Diagnosticadas/diagnóstico , Pruebas Genéticas/métodos , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA